

Consider a linear projection $Z: \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{r-1}$.

Q: Fix a variety $\mathcal{V} \subset \mathbb{P}^{n-1}$ of dimension r-2. How to recover \mathcal{V} from ALL linear projections such that $Z(\mathcal{V})$ is a hypersurface?

Consider a linear projection $Z: \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{r-1}$.

Q: Fix a variety $\mathcal{V} \subset \mathbb{P}^{n-1}$ of dimension r-2. How to recover \mathcal{V} from ALL linear projections such that $Z(\mathcal{V})$ is a hypersurface? Fact:

$$\mathcal{V} = \bigcap_{Z} Z^{-1}(Z(\mathcal{V})).$$

Consider a linear projection $Z: \mathbb{P}^{n-1} \dashrightarrow \mathbb{P}^{r-1}$.

Q: Fix a variety $\mathcal{V} \subset \mathbb{P}^{n-1}$ of dimension r-2. How to recover \mathcal{V} from ALL linear projections such that $Z(\mathcal{V})$ is a hypersurface? Fact:

$$\mathcal{V} = \bigcap_{Z} Z^{-1}(Z(\mathcal{V})).$$

The map Z induces a map

$$\wedge^k Z : \operatorname{Gr}(k, n) \dashrightarrow \operatorname{Gr}(k, r)$$

$$M \mapsto Z(M).$$

Consider a linear projection $Z: \mathbb{P}^{n-1} \dashrightarrow \mathbb{P}^{r-1}$.

Q: Fix a variety $\mathcal{V} \subset \mathbb{P}^{n-1}$ of dimension r-2. How to recover \mathcal{V} from ALL linear projections such that $Z(\mathcal{V})$ is a hypersurface? Fact:

$$\mathcal{V} = \bigcap_{Z} Z^{-1}(Z(\mathcal{V})).$$

The map Z induces a map

$$\wedge^k Z : \mathsf{Gr}(k,n) \dashrightarrow \mathsf{Gr}(k,r)$$

 $M \mapsto Z(M).$

Given a variety $\mathcal{V} \subset \operatorname{Gr}(k,n)$ of dimension k(r-k)-1, we have

$$\mathcal{V} \subseteq \bigcap_{Z} (\wedge^k Z)^{-1} (\wedge^k Z(\mathcal{V})).$$

Consider a linear projection $Z: \mathbb{P}^{n-1} \dashrightarrow \mathbb{P}^{r-1}$.

Q: Fix a variety $\mathcal{V} \subset \mathbb{P}^{n-1}$ of dimension r-2. How to recover \mathcal{V} from ALL linear projections such that $Z(\mathcal{V})$ is a hypersurface? Fact:

$$\mathcal{V} = \bigcap_{Z} Z^{-1}(Z(\mathcal{V})).$$

The map Z induces a map

$$\wedge^k Z : \mathsf{Gr}(k,n) \dashrightarrow \mathsf{Gr}(k,r)$$

 $M \mapsto Z(M).$

Given a variety $\mathcal{V} \subset \mathsf{Gr}(k,n)$ of dimension k(r-k)-1, we have

$$\mathcal{V} \subseteq \bigcap_{Z} (\wedge^k Z)^{-1} (\wedge^k Z(\mathcal{V})).$$

Not equality! We call the right side the recovered variety $W_{\mathcal{V}}$.

Example: curves

Let $\mathcal{V} \subset \mathsf{Gr}(2,n)$ be a curve. Consider the ruled surface

$$X_{\mathcal{V}} := \overline{\bigcup_{[L] \in \mathcal{V}} L} \subset \mathbb{P}^{n-1}.$$

Example: curves

Let $\mathcal{V} \subset \mathsf{Gr}(2,n)$ be a curve. Consider the ruled surface

$$X_{\mathcal{V}} := \overline{\bigcup_{[L] \in \mathcal{V}} L} \subset \mathbb{P}^{n-1}.$$

Theorem (P-Ranestad 25)

Let V, V' be curves in Gr(2, n). Suppose that X_{V} and $X_{V'}$ are not cones. Then $W_{V} = W_{V'}$ if and only if $X_{V} = X_{V'}$.

Example

If X is a quadric surface in \mathbb{P}^3 , it has two rulings $\mathcal{V}, \mathcal{V}'$. Then $W_{\mathcal{V}} = W_{\mathcal{V}'} = \mathcal{V} \cup \mathcal{V}'$. These curves have all the same $\wedge^k Z$ -projections, where Z is of dimension $4 \times n$.

The amplituhedron

The positive Grassmannian is

$$\operatorname{Gr}^{\geq 0}(k,n) := \operatorname{Gr}(k,n) \cap \mathbb{P}_{>0}^{\binom{n}{k}-1}.$$

The amplituhedron $A_{k,m,n}(Z)$ is the image of

$$\wedge^k Z : \mathsf{Gr}_{\geq 0}(k,n) \to \mathsf{Gr}(k,k+m).$$

The amplituhedron

The positive Grassmannian is

$$\operatorname{Gr}^{\geq 0}(k,n) := \operatorname{Gr}(k,n) \cap \mathbb{P}_{\geq 0}^{\binom{n}{k}-1}.$$

The amplituhedron $A_{k,m,n}(Z)$ is the image of

$$\wedge^k Z: \mathsf{Gr}_{\geq 0}(k,n) \to \mathsf{Gr}(k,k+m).$$

- ightharpoonup Computes scattering amplitudes in N=4 super Yang-Mills
- Inspired *positive geometry*, which studies "positive" parts of varieties, e.g. $Gr^{\geq 0}(k,n)$, $Fl^{\geq 0}(n)$, $\mathcal{M}_{0,n}^{\geq 0}$...

Combinatorial & Computational Aspects of Positive Geometry (Fri)

The Chow-Lam form (P-Sturmfels 25)

Fix a variety $\mathcal{V} \subset \operatorname{Gr}(k,n)$ of dimension k(r-k)-1. The *Chow-Lam locus* is

$$\mathcal{CL}_{\mathcal{V}} := \{ P \in \operatorname{Gr}(k+n-r,n) : \exists Q \in \mathcal{V} \text{ with } Q \text{ is a subspace of } P \}.$$

The Chow-Lam form $CL_{\mathcal{V}}$ is its equation, or $CL_{\mathcal{V}} := 1$ if it is not a hypersurface. If k = 1, then we call it the Chow form.

The Chow-Lam form (P-Sturmfels 25)

Fix a variety $\mathcal{V} \subset \operatorname{Gr}(k,n)$ of dimension k(r-k)-1. The *Chow-Lam locus* is

$$\mathcal{CL}_{\mathcal{V}} := \{ P \in \mathsf{Gr}(k+n-r,n) : \exists Q \in \mathcal{V} \text{ with } Q \text{ is a subspace of } P \}.$$

The Chow-Lam form $CL_{\mathcal{V}}$ is its equation, or $CL_{\mathcal{V}}:=1$ if it is not a hypersurface. If k=1, then we call it the Chow form.

Example (Cayley 1860)

Let k=1, n=4, r=3. Then \mathcal{V} is a curve in \mathbb{P}^3 and $\mathcal{CL}_{\mathcal{V}}$ is a hypersurface in Gr(2,4). It consists of lines in \mathbb{P}^3 meeting \mathcal{V} .

Discriminant!

Lines meeting the twisted cubic

Consider the closure of

$$t \mapsto [1:t:t^2:t^3] \in \mathbb{P}^3.$$

The Chow form is the determinant of the Bézout matrix:

$$\mathsf{CL}_{\mathcal{V}} = \det \begin{bmatrix} p_{12} & p_{13} & p_{14} \\ p_{13} & p_{14} + p_{23} & p_{24} \\ p_{14} & p_{24} & p_{34} \end{bmatrix}.$$

Its expansion is

$$-p_{14}^3 - p_{14}^2 p_{23} + 2p_{13} p_{14} p_{24} - p_{12} p_{24}^2 - p_{13}^2 p_{34} + p_{12} p_{14} p_{34} + p_{12} p_{23} p_{34}.$$

If p_{ij} are maximal minors of $\begin{bmatrix} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \end{bmatrix}$, then

$$\mathsf{CL}_{\mathcal{V}} = 0 \iff \begin{cases} a_3 t^3 + a_2 t^2 + a_1 t + a_0 \\ b_3 t^3 + b_2 t^2 + b_1 t + b_0 \end{cases}$$
 share a root.

History

- ightharpoonup Curves in \mathbb{P}^3 due to Cayley in 1860
- ▶ Projective varieties (so k = 1) due to Chow and van der Waerden in 1937 \rightsquigarrow Chow form

ightharpoonup For higher k, pioneered by Thomas Lam for positroid varieties

History

- ightharpoonup Curves in \mathbb{P}^3 due to Cayley in 1860
- ▶ Projective varieties (so k = 1) due to Chow and van der Waerden in 1937 \rightsquigarrow Chow form

- For higher k, pioneered by Thomas Lam for positroid varieties Special properties for k=1:
 - \diamond Always a hypersurface of the same degree as ${\cal V}$
 - \diamond Can recover equations of $\mathcal V$ from $\mathsf{CL}_{\mathcal V}$

When can you recover \mathcal{V} from $CL_{\mathcal{V}}$?

Example (Curve in \mathbb{P}^3)

Suppose \mathcal{V} is a curve and we know $\mathcal{CL}_{\mathcal{V}}$. Then p is in $\mathcal{V} \iff$ every line Q containing p is in $\mathcal{CL}_{\mathcal{V}}$.

When can you recover \mathcal{V} from $CL_{\mathcal{V}}$?

Example (Curve in \mathbb{P}^3)

Suppose \mathcal{V} is a curve and we know $\mathcal{CL}_{\mathcal{V}}$. Then p is in $\mathcal{V} \iff$ every line Q containing p is in $\mathcal{CL}_{\mathcal{V}}$.

The Chow-Lam recovered variety of $\dot{\mathcal{V}}$ is

 $W'_{\mathcal{V}} := \{ P \in Gr(k, n) : \text{ every } Q \text{ containing } P \text{ is in } \mathcal{CL}_{\mathcal{V}} \}.$

When can you recover \mathcal{V} from $CL_{\mathcal{V}}$?

Example (Curve in \mathbb{P}^3)

Suppose \mathcal{V} is a curve and we know $\mathcal{CL}_{\mathcal{V}}$. Then p is in $\mathcal{V} \iff$ every line Q containing p is in $\mathcal{CL}_{\mathcal{V}}$.

The Chow-Lam recovered variety of ${\mathcal V}$ is

$$W_{\mathcal{V}}' := \{ P \in Gr(k, n) : \text{ every } Q \text{ containing } P \text{ is in } \mathcal{CL}_{\mathcal{V}} \}.$$

Theorem (P-Ranestad 25)

We have the equality

$$W_{\mathcal{V}}' = W_{\mathcal{V}} := \bigcap_{Z} (\wedge^k Z)^{-1} (\wedge^k Z(\mathcal{V})).$$

A curve in Gr(2,4)

Let $\mathcal V$ be a curve in $\mathrm{Gr}(2,4)$. If $X_{\mathcal V}^\vee$ is a surface, then $\mathcal{CL}_{\mathcal V}=X_{\mathcal V}^\vee.$

A curve in Gr(2,4)

Let \mathcal{V} be a curve in Gr(2,4). If $X_{\mathcal{V}}^{\vee}$ is a surface, then $\mathcal{CL}_{\mathcal{V}}=X_{\mathcal{V}}^{\vee}$.

Corollary

Let $\mathcal{V}, \mathcal{V}'$ be curves in Gr(2,4). If $X_{\mathcal{V}} = X_{\mathcal{V}'}$ and both are surfaces, then $\mathcal{CL}_{\mathcal{V}} = \mathcal{CL}_{\mathcal{V}'}$ and $W_{\mathcal{V}} = W_{\mathcal{V}'}$.

A Schubert example

Let $\mathcal{V} \subset \operatorname{Gr}(2,5)$ consist of all lines meeting three fixed planes P_1, P_2 , and P_3 in \mathbb{P}^4 . Then $W_{\mathcal{V}}$ equals

{lines L in \mathbb{P}^4 : every plane Q containing L also contains some L' in \mathcal{V} }.

Then $W_{\mathcal{V}}$ has 7 components, including

- 1. Lines contained in P_i
- 2. Lines meeting $P_i \cap P_j$

Example: Suppose L is contained in P_1 .

Figure 1: The geometry in Q containing L

A Schubert example

Let $\mathcal{V} \subset \operatorname{Gr}(2,5)$ consist of all lines meeting three fixed planes P_1, P_2 , and P_3 in \mathbb{P}^4 . Then $W_{\mathcal{V}}$ equals

{lines L in \mathbb{P}^4 : every plane Q containing L also contains some L' in \mathcal{V} }.

Then $W_{\mathcal{V}}$ has 7 components, including

- 1. Lines contained in P_i
- 2. Lines meeting $P_i \cap P_j$

Example: Suppose L is contained in P_1 .

Figure 1: The geometry in Q containing L

Schubert varieties

Fix projective linear spaces $A \subset B$ of codimensions a+1 and b+1 in \mathbb{P}^{n-1} . We define

$$\Omega_{a,b}(A,B) = \{L : L \cap A \neq 0, L \subset B\} \subset \mathsf{Gr}(2,n).$$

If P has codimension 2 in \mathbb{P}^{n-1} , then

$$\Omega_1(A) := \{ L : L \cap A \neq \emptyset \} \subset \mathsf{Gr}(2, n).$$

Example

The extra components in $W_{\mathcal{V}}$ for $\mathcal{V} = \Omega_1(P_1) \cap \Omega_1(P_2) \cap \Omega_1(P_3)$ are of types

- $ightharpoonup \Omega_{1,1}$ (lines contained in P_i)
- $ightharpoonup \Omega_2$ (lines meeting $P_i \cap P_j$)

Some data for Schubert hyperplane sections

Consider the linear section

$$\Omega_1^r := \Omega_1(A_1) \cap \ldots \cap \Omega_1(A_r)$$

for A_1, \ldots, A_r general.

V	Recovered	n at least
Ω_1^7	Ω_7,Ω_{6^2}	9
Ω_1^9	$\Omega_{9},\Omega_{8^{2}}$	11
Ω_1^{2i+1}	$\Omega_{2i+1}, \Omega_{(2i)^2}$	2i+3

Table 1: Some recovered components for k=2

Theorem (P-Ranestad 25)

Fix k and i>k. Consider $V:=\Omega_1^{ki+1}\subset Gr(k,n)$ for n>k(i+1)+1. Then the Chow-Lam recovery $W_{\mathcal{V}}$ will contain recovered components of Schubert types $\Omega_{ki+1},\Omega_{(k(i-1)+2)^2},\Omega_{(k(i-2)+3)^3},\ldots,\Omega_{(k(i-k+1)+k)^k}$.

Curves in Gr(2, n)

Theorem (P-Ranestad 25)

Let $\mathcal{V} \subset Gr(2,n)$ be a curve such that $X_{\mathcal{V}}$ is not a cone. Then a line $L \in \mathbb{P}^{n-1}$ is in the recovery $W_{\mathcal{V}}$ if and only if $L \subset X_{\mathcal{V}}$.

Example (Hirzebruch surface)

Consider

$$X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(a)) \to \mathbb{P}^1.$$

Then X is ruled by the fibers, all of which meet the line L corresponding to $\mathcal{O}_{\mathbb{P}^1}(1)$.

We can embed $X \hookrightarrow \mathbb{P}^{a+2}$ using sections of the bundles. The ruling gives us a curve \mathcal{V} in Gr(2, a+3) with $L \in W_{\mathcal{V}}$.