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Linear projections

Consider a linear projection Z : Pn−1 99K Pr−1.

Q: Fix a variety V ⊂ Pn−1 of dimension r − 2. How to recover V
from ALL linear projections such that Z(V) is a hypersurface?

Fact:
V =

⋂
Z

Z−1(Z(V)).

The map Z induces a map

∧kZ : Gr(k, n) 99K Gr(k, r)

M 7→ Z(M).

Given a variety V ⊂ Gr(k, n) of dimension k(r − k)− 1, we have

V ⊆
⋂
Z

(∧kZ)−1(∧kZ(V)).

Not equality! We call the right side the recovered variety WV .
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Example: curves
Let V ⊂ Gr(2, n) be a curve. Consider the ruled surface

XV :=
⋃

[L]∈V

L ⊂ Pn−1.

Theorem (P-Ranestad 25)

Let V,V ′ be curves in Gr(2, n). Suppose that XV and XV ′ are not
cones. Then WV = WV ′ if and only if XV = XV ′ .

Example

If X is a quadric surface in P3, it has two rulings V,V ′. Then
WV = WV ′ = V ∪ V ′. These curves have all the same
∧kZ-projections, where Z is of dimension 4× n.
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The amplituhedron
The positive Grassmannian is

Gr≥0(k, n) := Gr(k, n) ∩ P(
n
k)−1

≥0 .

The amplituhedron Ak,m,n(Z) is the image of

∧kZ : Gr≥0(k, n) → Gr(k, k +m).

▶ Computes scattering amplitudes in N = 4 super Yang-Mills

▶ Inspired positive geometry, which studies “positive” parts of
varieties, e.g. Gr≥0(k, n), Fl≥0(n), M≥0

0,n ...

Combinatorial & Computational Aspects of Positive Geometry (Fri)
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The Chow-Lam form (P-Sturmfels 25)
Fix a variety V ⊂ Gr(k, n) of dimension k(r − k)− 1. The
Chow-Lam locus is

CLV := {P ∈ Gr(k+n−r, n) : ∃Q ∈ V with Q is a subspace of P}.

The Chow-Lam form CLV is its equation, or CLV := 1 if it is not a
hypersurface. If k = 1, then we call it the Chow form.

Example (Cayley 1860)

Let k = 1, n = 4, r = 3. Then V is a curve in P3 and CLV is a
hypersurface in Gr(2, 4). It consists of lines in P3 meeting V.

Discriminant!
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Lines meeting the twisted cubic
Consider the closure of

t 7→ [1 : t : t2 : t3] ∈ P3.

The Chow form is the determinant of the Bézout matrix:

CLV = det

p12 p13 p14
p13 p14 + p23 p24
p14 p24 p34

 .

Its expansion is

−p314−p214p23+2p13p14p24−p12p
2
24−p213p34+p12p14p34+p12p23p34.

If pij are maximal minors of

[
a0 a1 a2 a3
b0 b1 b2 b3

]
, then

CLV = 0 ⇐⇒

{
a3t

3 + a2t
2 + a1t+ a0

b3t
3 + b2t

2 + b1t+ b0
share a root.



History

▶ Curves in P3 due to Cayley in 1860

▶ Projective varieties (so k = 1) due to Chow and van der
Waerden in 1937 ⇝ Chow form

▶ For higher k, pioneered by Thomas Lam for positroid varieties

Special properties for k = 1:

⋄ Always a hypersurface of the same degree as V
⋄ Can recover equations of V from CLV
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When can you recover V from CLV?

Example (Curve in P3)

Suppose V is a curve and we know CLV . Then p is in V ⇐⇒
every line Q containing p is in CLV .

V

p

Q

The Chow-Lam recovered variety of V is

W ′
V := {P ∈ Gr(k, n) : every Q containing P is in CLV}.

Theorem (P-Ranestad 25)

We have the equality

W ′
V = WV :=

⋂
Z

(∧kZ)−1(∧kZ(V)).
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A curve in Gr(2, 4)

Let V be a curve in Gr(2, 4). If X∨
V is a surface, then CLV = X∨

V .

Corollary

Let V,V ′ be curves in Gr(2, 4). If XV = XV ′ and both are surfaces,
then CLV = CLV ′ and WV = WV ′ .
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A Schubert example
Let V ⊂ Gr(2, 5) consist of all lines meeting three fixed planes
P1, P2, and P3 in P4. Then WV equals

{lines L in P4 : every plane Q containing L also contains some L′ in V}.

Then WV has 7 components, including

1. Lines contained in Pi

2. Lines meeting Pi ∩ Pj

Example: Suppose L is contained in P1.

P2 ∩Q
L = P1 ∩Q

P3 ∩Q

Figure 1: The geometry in Q containing L



A Schubert example
Let V ⊂ Gr(2, 5) consist of all lines meeting three fixed planes
P1, P2, and P3 in P4. Then WV equals

{lines L in P4 : every plane Q containing L also contains some L′ in V}.

Then WV has 7 components, including

1. Lines contained in Pi

2. Lines meeting Pi ∩ Pj

Example: Suppose L is contained in P1.

P2 ∩Q

L′

L = P1 ∩Q

P3 ∩Q

Figure 1: The geometry in Q containing L



Schubert varieties

Fix projective linear spaces A ⊂ B of codimensions a+ 1 and b+ 1
in Pn−1. We define

Ωa,b(A,B) = {L : L ∩A ̸= 0, L ⊂ B} ⊂ Gr(2, n).

If P has codimension 2 in Pn−1, then

Ω1(A) := {L : L ∩A ̸= ∅} ⊂ Gr(2, n).

Example

The extra components in WV for V = Ω1(P1) ∩ Ω1(P2) ∩ Ω1(P3)
are of types

▶ Ω1,1 (lines contained in Pi)

▶ Ω2 (lines meeting Pi ∩ Pj)



Some data for Schubert hyperplane sections
Consider the linear section

Ωr
1 := Ω1(A1) ∩ . . . ∩ Ω1(Ar)

for A1, . . . , Ar general.

V Recovered n at least

Ω7
1 Ω7,Ω62 9

Ω9
1 Ω9,Ω82 11

Ω2i+1
1 Ω2i+1,Ω(2i)2 2i+ 3

Table 1: Some recovered components for k = 2

Theorem (P-Ranestad 25)

Fix k and i > k. Consider V := Ωki+1
1 ⊂ Gr(k, n) for

n > k(i+ 1) + 1. Then the Chow-Lam recovery WV will contain
recovered components of Schubert types
Ωki+1,Ω(k(i−1)+2)2 ,Ω(k(i−2)+3)3 , . . . , Ω(k(i−k+1)+k)k .



Thank you for listening!



Curves in Gr(2, n)

Theorem (P-Ranestad 25)

Let V ⊂ Gr(2, n) be a curve such that XV is not a cone. Then a
line L ∈ Pn−1 is in the recovery WV if and only if L ⊂ XV .

Example (Hirzebruch surface)

Consider
X = P(OP1(1)⊕OP1(a)) → P1.

Then X is ruled by the fibers, all of which meet the line L
corresponding to OP1(1).

L

We can embed X ↪→ Pa+2 using sections of the bundles. The
ruling gives us a curve V in Gr(2, a+ 3) with L ∈ WV .


