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Consider a linear projection Z : P»~1 ——5 Pr—1,

Q: Fix a variety V C P*~! of dimension r — 2. How to recover V
from ALL linear projections such that Z(V) is a hypersurface?
Fact:

v=1Z2"'2zW).
Z
The map Z induces a map

AFZ - Gr(k,n) --» Gr(k,r)
M — Z(M).

Given a variety ¥V C Gr(k,n) of dimension k(r — k) — 1, we have

VC(AFZ) " (AR Z(v)).
A

Not equality! We call the right side the recovered variety Wy,.
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Example: curves
Let V C Gr(2,n) be a curve. Consider the ruled surface

Xy:= )L cp
[L]eV

Theorem (P-Ranestad 25)

Let V, V' be curves in Gr(2,n). Suppose that Xy and X\» are not
cones. Then Wy, = Wy if and only if Xy = Xy.

Example

If X is a quadric surface in P3, it has two rulings V,)’. Then
Wy = Wy =V UYV'. These curves have all the same
AF Z-projections, where Z is of dimension 4 x n.
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The amplituhedron

The positive Grassmannian is

Gr20(k, n) = Gr(k,n) NP

>0
The amplituhedron Ay m n(Z) is the image of
A*Z : Grso(k,n) — Gr(k, k +m).

» Computes scattering amplitudes in N = 4 super Yang-Mills

» Inspired positive geometry, which studies “positive” parts of
varieties, e.g. Gr=0(k,n), FIZ%(n), M2

Combinatorial & Computational Aspects of Positive Geometry (Fri)




The Chow-Lam form (P-Sturmfels 25)

Fix a variety V C Gr(k,n) of dimension k(r — k) — 1. The
Chow-Lam locus is

CLy :={P € Gr(k+n—r,n) : 3Q € V with @ is a subspace of P}.

The Chow-Lam form CLy, is its equation, or CLy := 1 if it is not a
hypersurface. If £k = 1, then we call it the Chow form.
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Fix a variety V C Gr(k,n) of dimension k(r — k) — 1. The
Chow-Lam locus is

CLy :={P € Gr(k+n—r,n) : 3Q € V with @ is a subspace of P}.

The Chow-Lam form CLy, is its equation, or CLy := 1 if it is not a
hypersurface. If £k = 1, then we call it the Chow form.

Example (Cayley 1860)

let k=1,n=4,r=3. Then Vis a curve in P2 and CLy is a
hypersurface in Gr(2,4). It consists of lines in P3 meeting V.
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Discriminant!



Lines meeting the twisted cubic
Consider the closure of

tes [L:t:t?: 7] € PA.
The Chow form is the determinant of the Bézout matrix:

P12 P13 P14
CLy =det |p13 p1a +p23 D2
P14 P24 P34

lts expansion is

—p:ﬂ —p%4p23 +2p13p14D24 —p12p34 —p%3p34 +P12P14P34 +P12P23P34-

ap a1 a9 as

If p;; are maximal minors of [bo by by by

] , then

share a root.

CLy = 0 {a3t3 + a2t2 + a1t + ag

bst3 + bot? + byt + by



History

» Curves in P3 due to Cayley in 1860

» Projective varieties (so k = 1) due to Chow and van der
Waerden in 1937 ~» Chow form

» For higher k, pioneered by Thomas Lam for positroid varieties



History

» Curves in P3 due to Cayley in 1860

» Projective varieties (so k = 1) due to Chow and van der
Waerden in 1937 ~» Chow form

» For higher k, pioneered by Thomas Lam for positroid varieties
Special properties for k = 1:
¢ Always a hypersurface of the same degree as V

¢ Can recover equations of V from CLy,
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When can you recover V from CLy,?

Example (Curve in P?)
Suppose V is a curve and we know CLy. Then pisin ) <—
every line () containing p is in CLy.

Q

Ly
The Chow-Lam recovered variety of V is

Wy, :={P € Gr(k,n) : every Q containing P isin CLy}.

Theorem (P-Ranestad 25)
We have the equality

Wy =Wy = (A 2) 1 (A" Z(V)).
Z
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Let V be a curve in Gr(2,4). If X\ is a surface, then CLy = X.




A curve in Gr(2,4)

Let V be a curve in Gr(2,4). If X\ is a surface, then CLy = X.

Corollary

Let V, V' be curves in Gr(2,4). If Xy, = Xy» and both are surfaces,
then CLy = CLyr and Wy, = Wy,



A Schubert example
Let V C Gr(2,5) consist of all lines meeting three fixed planes
Py, P>, and P; in P*. Then Wy equals

{lines L in P* : every plane Q) containing L also contains some L in V}.

Then WA, has 7 components, including
1. Lines contained in P,
2. Lines meeting P; N P;

Example: Suppose L is contained in P;.

o2 NQ
L= P NQ

°py ne

Figure 1: The geometry in () containing L
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Schubert varieties

Fix projective linear spaces A C B of codimensions a+1 and b+ 1
in P"~1. We define

Qup(A,B)={L : LNA#0,LC B} C Gr(2,n).
If P has codimension 2 in P*~ ! then
Q1 (A):={L : LNnA# 2} C Gr(2,n).

Example

The extra components in Wy, for V = Qq1(Py) N Q1 (P2) N Q1 (Ps)
are of types

» Q11 (lines contained in P;)
> Q5 (lines meeting P, N P))



Some data for Schubert hyperplane sections
Consider the linear section

7{ = Ql(Al) MN...N Ql(Ar)

for Ay, ..., A, general.
V Recovered n at least
Qf Qr7, Qg2 9
QF Qg, Qg2 11
QT | o1, Qe 21+ 3

Table 1: Some recovered components for k = 2

Theorem (P-Ranestad 25)

Fix k and i > k. Consider V := Q¥*1 < Gr(k,n) for
n > k(i+ 1)+ 1. Then the Chow-Lam recovery Wy, will contain
recovered components of Schubert types

it 1, Qri—1)4+2)2 Qk(i=2)43)31 - > Qlimkt1)+k)" -






Curves in Gr(2,n)

Theorem (P-Ranestad 25)

Let V C Gr(2,n) be a curve such that Xy, is not a cone. Then a
line L € P"~! js in the recovery Wy, if and only if L C Xy.
Example (Hirzebruch surface)

Consider
X =P(Op1(1) ® Opi(a)) — P

Then X is ruled by the fibers, all of which meet the line L
corresponding to Op1(1).

We can embed X — P%t2 using sections of the bundles. The
ruling gives us a curve V in Gr(2,a + 3) with L € Wy,.



