The Chow-Lam Form joint work with Bernd Sturmfels

Lizzie Pratt

Slides: https://lizziepratt.com/notes

May 31, 2024

The Chow Form

Definition (Chow form)

Let $X \subset \mathbb{P}^{n-1}$ be a d-dimensional projective variety. The Chow locus of X is

$$
\mathcal{C}_{X}=\{L \in \operatorname{Gr}(n-d-1, n): X \cap L \neq \varnothing\} .
$$

The Chow form C_{X} is the defining equation of \mathcal{C}_{X}.

The Chow Form

Definition (Chow form)
Let $X \subset \mathbb{P}^{n-1}$ be a d-dimensional projective variety. The Chow locus of X is

$$
\mathcal{C}_{X}=\{L \in \operatorname{Gr}(n-d-1, n): X \cap L \neq \varnothing\} .
$$

The Chow form C_{X} is the defining equation of \mathcal{C}_{X}.
Example (Hypersurface)
The Chow form of a hypersurface $V(F)$ is F.
Example (Linear space)
The Chow locus of a linear space is a Schubert divisor.

Coordinate Systems

A linear space L can represented multiple ways.

- Primal : as the kernel of an $(n-k) \times n$ matrix
- Dual : as the rowspan of a $k \times n$ matrix

The primal and dual Plücker coordinates are the maximal minors of these matrices.

Example (Coordinates on $\operatorname{Gr}(3,5)$)

p_{12}	p_{13}	p_{14}	p_{15}	p_{23}	p_{24}	p_{25}	p_{34}	p_{35}	p_{45}
q_{345}	$-q_{245}$	q_{235}	$-q_{234}$	q_{145}	$-q_{135}$	q_{134}	q_{125}	$-q_{124}$	q_{123}

The twisted cubic

The Chow locus is

$$
\mathcal{C}_{X}=\left\{L \in \operatorname{Gr}(2,4) \text { such that the line } L \text { meets } X \text { in } \mathbb{P}^{3}\right\} .
$$

The Chow form is the determinant of the Bézout matrix :

$$
C_{X}=\operatorname{det}\left[\begin{array}{ccc}
p_{12} & p_{13} & p_{14} \\
p_{13} & p_{14}+p_{23} & p_{24} \\
p_{14} & p_{24} & p_{34}
\end{array}\right]
$$

Its expansion is
$-p_{14}^{3}-p_{14}^{2} p_{23}+2 p_{13} p_{14} p_{24}-p_{12} p_{24}^{2}-p_{13}^{2} p_{34}+p_{12} p_{14} p_{34}+p_{12} p_{23} p_{34}$
For more on curves and resultants, see [David Eisenbud and
Frank-Olaf Schreyer: Resultants and Chow Forms via Exterior Syzygies, 2003]

Theorem: Projection

Let L be a linear subspace of \mathbb{P}^{n-1}. Let Z be a $r \times n$ matrix, where $r \leq \operatorname{dim} X-2$. We get a projection

$$
Z: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{r-1}
$$

Then $L \in \mathcal{C}_{Z(X)} \Longleftrightarrow Z^{-1}(L) \in \mathcal{C}_{X}$.

Theorem: Projection

Let L be a linear subspace of \mathbb{P}^{n-1}. Let Z be a $r \times n$ matrix, where $r \leq \operatorname{dim} X-2$. We get a projection

$$
Z: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{r-1}
$$

Then $L \in \mathcal{C}_{Z(X)} \Longleftrightarrow Z^{-1}(L) \in \mathcal{C}_{X}$.

Q: How do we compute Plücker coordinates of the fiber $Z^{-1}(L)$ in terms of Plücker coordinates of L and matrix entries of Z ?

Twistor coordinates

Proposition (Twistor Coordinates)

Let L be given in dual coordinates, as the column span of an $r \times(r-d-1)$ matrix. The primal Plucker coordinate $p_{I}\left(Z^{-1}(L)\right)$ for $|I|=d+1$ is the Ith twistor coordinate of Z and L, given by

$$
[Z: L]_{I}:=\operatorname{det}\left[Z_{I} L\right]
$$

Example

Let $n=4, r=3$, and $d=1$. Then

$$
\begin{aligned}
& p_{12}\left(Z^{-1}(L)\right)=\operatorname{det}\left[\begin{array}{lll}
Z_{1} & Z_{2} & L
\end{array}\right], \\
& p_{13}\left(Z^{-1}(L)\right)=\operatorname{det}\left[\begin{array}{lll}
Z_{1} & Z_{3} & L
\end{array}\right]
\end{aligned}
$$

The twisted cubic revisited

Recall the Chow form:
$-p_{14}^{3}-p_{14}^{2} p_{23}+2 p_{13} p_{14} p_{24}-p_{12} p_{24}^{2}-p_{13}^{2} p_{34}+p_{12} p_{14} p_{34}+p_{12} p_{23} p_{34}$
We make the substitution where the $p_{i j}$ index 3×3 minors of

$$
[Z \mid L]=\left[\begin{array}{lllll}
z_{11} & z_{12} & z_{13} & z_{14} & l_{1} \\
z_{21} & z_{22} & z_{23} & z_{24} & l_{2} \\
z_{31} & z_{32} & z_{33} & z_{34} & l_{3}
\end{array}\right]
$$

involving l. Then $p_{i j}\left(Z^{-1}(L)\right)=[Z \mid L]_{i j}$

$$
=\left(z_{1 i} z_{2 j}-z_{2 i} z_{1 j}\right) l_{3}-\left(z_{1 i} z_{3 j}-z_{3 i} z_{1 j}\right) l_{2}+\left(z_{2 i} z_{3 j}-z_{3 i} z_{2 j}\right) l_{1}
$$

Now $C_{Z(X)}(L)=C_{X}\left(Z^{-1}(L)\right)$ is a function of $\left[l_{1}: l_{2}: l_{3}\right]$ on \mathbb{P}^{3} and the matrix entries of Z.

The twisted cubic revisited

The Chow form $C_{Z(X)}(L)$ computes universal projection equations.

A new context: Grassmannians

Inspired by [Thomas Lam: Totally nonnegative Grassmannian and Grassmann polytopes, 2015]
Let Z be a $r \times n$ matrix. This gives a map

$$
\begin{gathered}
Z: \operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(k, r) \\
{[M] \mapsto[Z M]}
\end{gathered}
$$

Can we compute "universal" equations of projected varieties which are codimension 1 in the target?

The Chow-Lam form

Definition (Grassmannian)

For a linear space P in \mathbb{P}^{n-1}, let $\operatorname{Gr}(k, P)$ denote $(k-1)$-planes in \mathbb{P}^{n-1} contained in P.

Definition (Chow-Lam form)
Let \mathcal{V} be a variety of dimension $k(r-k)-1$ for some $r \leq n$. We define the Chow-Lam locus to be

$$
\mathcal{C} \mathcal{L}_{\mathcal{V}}:=\{P \in \operatorname{Gr}(k+n-r, n): \operatorname{Gr}(k, P) \cap \mathcal{V} \neq \varnothing\}
$$

i.e. "spaces P which have a subspace Q, where Q is a point of \mathcal{V}."

When $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ has codimension 1 , its defining equation is the Chow-Lam form $C L_{\mathcal{V}}$.

Example: Ruled surface

Let $\mathcal{V} \subset \operatorname{Gr}(2,4)$ be a curve, and let S be the surface swept out by lines parameterized by \mathcal{V}.

- Here $n=4, k=2, r=3$, so $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is a surface in $\operatorname{Gr}(4-3+2,4)=\operatorname{Gr}(3,4)=\left(\mathbb{P}^{3}\right)^{\vee}$.

Example: Ruled surface

Let $\mathcal{V} \subset \operatorname{Gr}(2,4)$ be a curve, and let S be the surface swept out by lines parameterized by \mathcal{V}.

- Here $n=4, k=2, r=3$, so $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is a surface in $\operatorname{Gr}(4-3+2,4)=\operatorname{Gr}(3,4)=\left(\mathbb{P}^{3}\right)^{\vee}$.
- It parametrizes planes P in \mathbb{P}^{3} which contain a line Q from \mathcal{V}.

Example: Ruled surface

Let $\mathcal{V} \subset \operatorname{Gr}(2,4)$ be a curve, and let S be the surface swept out by lines parameterized by \mathcal{V}.

- Here $n=4, k=2, r=3$, so $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is a surface in $\operatorname{Gr}(4-3+2,4)=\operatorname{Gr}(3,4)=\left(\mathbb{P}^{3}\right)^{\vee}$.
- It parametrizes planes P in \mathbb{P}^{3} which contain a line Q from \mathcal{V}.
- Turns out $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is the projective dual of S, i.e. the variety of tangent planes.

Projection Formula

Proposition (P-Sturmfels)

The Chow-Lam form $\mathrm{CL}_{Z(\mathcal{V})}$ is obtained from the Chow-Lam form $\mathrm{CL}_{\mathcal{V}}$ by replacing the primal Plücker coordinates with twistor coordinates:

$$
p_{I}=\operatorname{det}\left[\begin{array}{ll}
Z_{I} & L
\end{array}\right] \text { for } I \subset\binom{n}{r-k}
$$

This expresses $\mathrm{CL}_{Z(\mathcal{V})}$ in dual Plücker coordinates on $\operatorname{Gr}(k, r)$, given by the $r \times k$ matrix L.

Example: Positroid varieties

Fix $k=2, n=9, r=7$ and the positroid variety

$$
\mathcal{V}=V\left(q_{12}, q_{13}, q_{23}, q_{45}, q_{67}, q_{89}\right) \subset \operatorname{Gr}(2,9)
$$

This variety is dimension 9 and consists of rowspans of 2×9 matrices $L=\left[L_{1} \ldots L_{9}\right]$ with $\operatorname{rk}\left(L_{123}\right)=\operatorname{rk}\left(L_{45}\right)=\operatorname{rk}\left(L_{67}\right)=\operatorname{rk}\left(L_{89}\right)=1$. Then $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is in $\operatorname{Gr}(4,9)$.

Example: Positroid varieties

Fix $k=2, n=9, r=7$ and the positroid variety

$$
\mathcal{V}=V\left(q_{12}, q_{13}, q_{23}, q_{45}, q_{67}, q_{89}\right) \subset \operatorname{Gr}(2,9)
$$

This variety is dimension 9 and consists of rowspans of 2×9 matrices $L=\left[L_{1} \ldots L_{9}\right]$ with $\operatorname{rk}\left(L_{123}\right)=\operatorname{rk}\left(L_{45}\right)=\operatorname{rk}\left(L_{67}\right)=\operatorname{rk}\left(L_{89}\right)=1$. Then $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is in $\operatorname{Gr}(4,9)$.

Let $X=\left[X_{1} \ldots X_{9}\right]$ be a 4×9 matrix. Note that $L \subset X$ if and only if there exists a 2×4 matrix T with $L=T X$. Then $T X$ is in \mathcal{V} iff

$$
\operatorname{rk}\left(T X_{123}\right)=\operatorname{rk}\left(T X_{45}\right)=\operatorname{rk}\left(T X_{67}\right)=\operatorname{rk}\left(T X_{89}\right)=1
$$

Example: Positroid varieties

Fix $k=2, n=9, r=7$ and the positroid variety

$$
\mathcal{V}=V\left(q_{12}, q_{13}, q_{23}, q_{45}, q_{67}, q_{89}\right) \subset \operatorname{Gr}(2,9)
$$

This variety is dimension 9 and consists of rowspans of 2×9 matrices $L=\left[L_{1} \ldots L_{9}\right]$ with $\operatorname{rk}\left(L_{123}\right)=\operatorname{rk}\left(L_{45}\right)=\operatorname{rk}\left(L_{67}\right)=\operatorname{rk}\left(L_{89}\right)=1$. Then $\mathcal{C} \mathcal{L}_{\mathcal{V}}$ is in $\operatorname{Gr}(4,9)$.

Let $X=\left[X_{1} \ldots X_{9}\right]$ be a 4×9 matrix. Note that $L \subset X$ if and only if there exists a 2×4 matrix T with $L=T X$. Then $T X$ is in \mathcal{V} iff

$$
\operatorname{rk}\left(T X_{123}\right)=\operatorname{rk}\left(T X_{45}\right)=\operatorname{rk}\left(T X_{67}\right)=\operatorname{rk}\left(T X_{89}\right)=1 .
$$

Geometrically: The line in \mathbb{P}^{3} given by T is contained in the plane X_{123} and intersects the lines X_{45}, X_{67}, and X_{89}.

Example: Positroid varieties

For which X does there exists a line T in \mathbb{P}^{3} contained in the plane X_{123} and intersecting the lines X_{45}, X_{67}, and X_{89} ?

Example: Positroid varieties

For which X does there exists a line T in \mathbb{P}^{3} contained in the plane X_{123} and intersecting the lines X_{45}, X_{67}, and X_{89} ?

Answer: When the points $X_{123} \cap X_{45}, X_{123} \cap X_{67}, X_{123} \cap X_{89}$ are collinear! In Plücker coordinates, we have

$$
X_{123} \cap X_{i j}=q_{23 i j} X_{1}-q_{13 i j} X_{2}+q_{12 i j} X_{3} .
$$

The Chow-Lam form is

$$
\mathrm{CL}_{\mathcal{V}}=\operatorname{det}\left[\begin{array}{lll}
q_{2345} & -q_{1345} & q_{1245} \\
q_{2367} & -q_{1367} & q_{1267} \\
q_{2389} & -q_{1389} & q_{1289}
\end{array}\right]
$$

Example: Positroid varieties

Fix $k=2, n=10, r=8$ and consider the positroid variety

$$
\mathcal{V}=V\left(q_{12}, q_{34}, q_{56}, q_{78}, q_{90}\right) \subset \operatorname{Gr}(2,10)
$$

By similar reasoning, the Chow-Lam locus is given by matrices $X=\left[\begin{array}{llll}X_{1} & \ldots & X_{9} & X_{0}\end{array}\right]$ where the five lines $X_{12}, X_{34}, X_{56}, X_{78}, X_{90}$ have a common transversal. This codimension 1 condition is given by the Chow-Lam form

$$
\mathrm{CL}_{\mathcal{V}}=\operatorname{det}\left[\begin{array}{ccccc}
0 & q_{1234} & q_{1256} & q_{1278} & q_{1290} \\
q_{1234} & 0 & q_{3456} & q_{3378} & q_{3490} \\
q_{1256} & q_{3456} & 0 & q_{5678} & q_{5690} \\
q_{1278} & q_{3478} & q_{5678} & 0 & q_{7890} \\
q_{1290} & q_{3490} & q_{5690} & q_{7890} & 0
\end{array}\right] .
$$

Hurwitz forms and higher Chow forms

Higher Chow forms characterize linear spaces that intersect \mathcal{V} non-transversally. These are also known as coisotropic hypersurfaces.

Definition (Hurwitz locus)

The Hurwitz locus of a projective variety X of dimension d consists of linear spaces of codimension d which intersect X non-transversally.

Definition (Hurwitz-Lam locus)
Let \mathcal{V} have dimension $k(r-k)$ for some r. The Hurwitz-Lam locus of \mathcal{V} is

$$
\mathcal{H} \mathcal{L}_{\mathcal{V}}=\{P \in \operatorname{Gr}(k+n-r, n): \mathcal{V} \cap \operatorname{Gr}(k, P) \text { is not transverse }\}
$$

Hurwitz-Lam forms

Theorem (P-Sturmfels, Computing Branch Loci)
The branch locus of $Z: \operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(k, r)$ in \mathcal{V} is a hypersurface in $\operatorname{Gr}(k, r)$, and its equation is obtained from the Hurwitz-Lam form by replacing the primal Plücker coordinates with twistor coordinates.

Example: Four mass box

Consider the positroid variety given by

$$
\mathcal{V}=V\left(q_{12}, q_{34}, q_{56}, q_{78}\right) \subset \operatorname{Gr}(2,8) .
$$

Its Hurwitz-Lam form is in $\operatorname{Gr}(4,8)$ and consists of matrices $X=\left[X_{1} \ldots X_{8}\right]$ where the system of equations

$$
\operatorname{rk}\left(T X_{12}\right)=\operatorname{rk}\left(T X_{34}\right)=\operatorname{rk}\left(T X_{56}\right)=\operatorname{rk}\left(T X_{78}\right)=1
$$

has fewer solutions than expected.

Example: Four mass box

Consider the positroid variety given by

$$
\mathcal{V}=V\left(q_{12}, q_{34}, q_{56}, q_{78}\right) \subset \operatorname{Gr}(2,8)
$$

Its Hurwitz-Lam form is in $\operatorname{Gr}(4,8)$ and consists of matrices $X=\left[X_{1} \ldots X_{8}\right]$ where the system of equations

$$
\operatorname{rk}\left(T X_{12}\right)=\operatorname{rk}\left(T X_{34}\right)=\operatorname{rk}\left(T X_{56}\right)=\operatorname{rk}\left(T X_{78}\right)=1
$$

has fewer solutions than expected.
Geometrically: Matrices X such that the lines $X_{12}, X_{34}, X_{56}, X_{78}$ have a single common transversal in \mathbb{P}^{3}.

Example: Four mass box

Consider the positroid variety given by

$$
\mathcal{V}=V\left(q_{12}, q_{34}, q_{56}, q_{78}\right) \subset \operatorname{Gr}(2,8)
$$

Its Hurwitz-Lam form is in $\operatorname{Gr}(4,8)$ and consists of matrices $X=\left[X_{1} \ldots X_{8}\right]$ where the system of equations

$$
\operatorname{rk}\left(T X_{12}\right)=\operatorname{rk}\left(T X_{34}\right)=\operatorname{rk}\left(T X_{56}\right)=\operatorname{rk}\left(T X_{78}\right)=1
$$

has fewer solutions than expected.
Geometrically: Matrices X such that the lines $X_{12}, X_{34}, X_{56}, X_{78}$ have a single common transversal in \mathbb{P}^{3}. This condition is given by

$$
\mathrm{HL}_{\mathcal{V}}=\operatorname{det}\left[\begin{array}{cccc}
0 & q_{1234} & q_{1256} & q_{1278} \\
q_{1234} & 0 & q_{3456} & q_{3478} \\
q_{1256} & q_{3456} & 0 & q_{5678} \\
q_{1278} & q_{3478} & q_{5678} & 0
\end{array}\right]
$$

Thank you for listening!

Example: Positroid variety

Proposition (P-Sturmfels)

The Hurwitz-Lam form of the positroid variety

$$
\mathcal{V}=V\left(q_{12}, q_{34}, q_{56}, q_{78}\right) \subset \operatorname{Gr}(2,8) \text { equals }
$$

$$
\begin{gathered}
\mathrm{HL} \mathcal{V}=p_{1235}^{2} p_{4678}^{2}+p_{1236}^{2} p_{4578}^{2}+p_{1245}^{2} p_{3678}^{2}+p_{1246}^{2} p_{3578}^{2} \\
+4 p_{1235} p_{1246} p_{3578} p_{4678}-2\left(p_{1234} p_{1256} p_{3478} p_{5678}+p_{1234} p_{1256} p_{3578} p_{4678}\right. \\
+p_{1235} p_{1236} p_{4578} p_{4678}+p_{1235} p_{1245} p_{3678} p_{4678}+p_{1235} p_{1246} p_{3478} p_{5678} \\
\left.+p_{1236} p_{1246} p_{3578} p_{4578}+p_{1245} p_{1246} p_{3578} p_{3678}\right) .
\end{gathered}
$$

Geometrically: The Grasstope $Z(\mathcal{V}) \subset \operatorname{Gr}(2,6)$ has a degree four and codimension two boundary given by this ramification locus, which is NOT itself the projection of a positroid variety.

Example: Schubert varieties

Consider the following Schubert varieties in $\operatorname{Gr}(2,5)$ of dimension $3=2(4-2)-1$:

- $\Sigma_{24}^{\circ}=\left\{\right.$ rowspan $\left.\left[\begin{array}{ccccc}0 & 1 & \star & 0 & \star \\ 0 & 0 & 0 & 1 & \star\end{array}\right]\right\}$
- $\Sigma_{15}^{\circ}=\left\{\right.$ rowspan $\left.\left[\begin{array}{ccccc}1 & \star & \star & \star & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\right\}$

The Chow locus lives in $\operatorname{Gr}(5+2-4,5)=\operatorname{Gr}(3,5)$. It turns out that
$-\mathcal{C} \mathcal{L}_{\Sigma_{24}}=V\left(p_{45}\right)$

- $\mathcal{C} \mathcal{L}_{\Sigma_{15}}=V\left(p_{15}, p_{25}, p_{35}, p_{45}\right)$

Thus we get an example of a Chow-Lam locus with codimension higher than 1.

Example: Schubert varieties

Connection with projection.

- $\Sigma_{24}^{\circ}=\left\{\right.$ rowspan $\left.\left[\begin{array}{lllll}0 & 1 & \star & 0 & \star \\ 0 & 0 & 0 & 1 & \star\end{array}\right]\right\}$
- $\Sigma_{15}^{\circ}=\left\{\operatorname{rowspan}\left[\begin{array}{ccccc}1 & \star & \star & \star & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\right\}$

Fix a 4×5 matrix Z. Then points in $Z\left(\Sigma_{24}\right)$ and $Z\left(\Sigma_{15}\right)$ look like

- rowspan $\left[\begin{array}{c}Z_{2}+\star Z_{3}+\star Z_{5} \\ Z_{4}+\star Z_{5}\end{array}\right]$
- rowspan $\left[\begin{array}{c}Z_{1}+\star Z_{2}+\star Z_{3}+\star Z_{4} \\ Z_{5}\end{array}\right]$

These are "lines which intersect the line $\operatorname{span}\left(Z_{4}, Z_{5}\right)$ in $\mathbb{P}^{3 "}$ and "lines which pass through the point Z_{5} in \mathbb{P}^{3} ". In terms of a line rowspan (L), their equations are respectively

- $\operatorname{det}\left[Z_{4} Z_{5} \mid L\right]=0$
- $\operatorname{det}\left[Z_{i} Z_{5} \mid L\right]=0$ for $i=1,2,3,4$.

