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Overview

Overview

Scattering amplitudes to PDEs

D-modules: why are they useful?

This presentation is based on joint work with Johannes Henn,
Anna-Laura Sattelberger, and Simone Zoia, available at
https://arxiv.org/abs/2303.11105.
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Scattering Amplitudes to PDEs

Observation 1: A scattering amplitude is a sum over
Feynman integrals

A =
∑
G

IG.

Observation 2: Integration is difficult.

Idea: What if we exploited symmetry to find some
differential equations that the integrals satisfy, and
solve those?
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Encoding Symmetry Using PDEs

Example (Dilation in two variables)

Observe that by Taylor expansion,

f((1 + ϵ)x, (1 + ϵ)y) = f(x, y) + ϵ

(
x
df

dx
+ y

df

dy

)
+O(ϵ2).

Thus f(x, y) is invariant under infinitesimal dilation whenever
T (x) := x d

dx + y d
dy annihilates f(x, y). Solutions are x

y , etc.

The scattering amplitude will be annihilated by these differential
operators.
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Conformal Symmetry

Functions of these particles which are physically meaningful should
be invariant under conformal (or angle-preserving) transformations.
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PDEs for Conformal Symmetry

After translating from position to momentum space, the full list of
operators that capture conformal symmetry is

Translation: Pµ = ∂µ

Lorentz transformations: Mµν = pµ∂ν − pν∂µ

Dilation: D∆ = −i (pµ∂µ +∆)

Special conformal boosts: Kµ
∆ = i

(
p2∂µ − 2pµpν∂ν − 2∆pµ

)
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PDEs to D-modules

Example (Triangle Feynman integral)

Conformally invariant functions of three particles are annihilated by

P1 = 4(x1∂
2
1 − x3∂

2
3) + 4(∂1 − ∂3),

P2 = 4(x2∂
2
2 − x3∂

2
3) + 4(∂2 − ∂3),

P3 = x1∂1 + x2∂2 + x3∂3 + 1.

with the change of coordinates x1 = p21, x2 = p22, and x3 = p1 · p2.
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Main result

Theorem (Henn-P.-Sattelberger-Zoia)

The series solutions to the triangle Feynman integral are

f̃1(y2, y3) = 1 + y2 + y3 + y22 + 4y2y3 + y23 + y32 + 9y22y3 + y42 + · · · ,

f̃2(y2, y3) = log(y2) + log(y2)y2 + (2 + log(y2))y3 + log(y2)y
2
2 + (4 + 4 log(y2))y2y3

+ (3 + log(y2))y
2
3 + (log(y2))y

3
2 + (6 + 9 log(y2))y

2
2y3 + · · · ,

f̃3(y2, y3) = log(y3) + (2 + log(y3))y2 + log(y3)y3 + (3 + log(y3))y
2
2

+ (4 + 4 log(y3))y2y3 + log(y3)y
2
3 +

(
11

3
+ log(y3)

)
y32

+ (15 + 9 log(y3))y
2
2y3 +

(
25

6
+ log(y3)

)
y42 + · · · ,

f̃4(y2, y3) = log(y2) log(y3) + (−2 + 2 log(y2) + log(y2) log(y3))y2

+ (−2 + 2 log(y3) + log(y2) log(y3)) y3

+

(
−
5

2
+ 3 log(y2) + log(y2) log(y3)

)
y22

+ (−6 + 4 log(y2) + 4 log(y3) + 4 log(y2) log(y3)) y2y3 + · · · .

where y2 =
x1
x2
, y3 =

x1
x3
.
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D-modules

Q: How to we understand systems of linear PDEs algebraically?

Definition (D-module)

The nth Weyl algebra, denoted Dn or D, is the C-algebra

D := C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩,

where all generators commute except ∂i and xi, which satisfy the
“Leibniz rule”

[∂i, xi] = ∂ixi − xi∂i = 1.

A D-module is a module over the Weyl algebra.

Example

Let I be any left D-ideal. Then D/I is D-module.
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Why Are D-modules Cool?

Representation
Theory (Kazhdan-
Lusztig conjectures)

Geometric Representation
Theory (Riemann-Hilbert
Correspondence)

Computational
techniques for
PDEs

Algebraic Statistics
(Bernstein-Sato
polynomials)

Combinatorial Algebraic
Geometry (GKZ systems
from toric varieties)

D-modules
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Why Are D-modules Useful for PDEs?

Suppose your D-ideal is holonomic. Then one can compute:

The number of linearly independent holomorphic solutions in
a simply connected neighborhood of a generic point (the
holonomic rank)

Where your solutions can have singularities (the singular
locus)

Solutions in the form of series expansions
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An Example in Macaulay 2
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Singular Locus

Here Sing(I) is the union of a cone and the hyperplanes xi = 0.

Sing(I) = {x1x2x3(x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3) = 0}.

Figure 1: Hypersurface x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3 − 2x2x3
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Solving differential equations?

Q: Given an ODE, how to obtain series solutions?

Example (Frobenius algorithm)

Let P = ∂2 + 1 and guess the solution is of the form
f(x) =

∑
n anx

n. Then we get

0 = P · f(x)

=
∑
n

n(n− 1)anx
n−2 −

∑
n

anx
n

=
∑
n

(n+ 2)(n+ 1)an+2x
n −

∑
n

anx
n

=
∑
n

((n+ 2)(n+ 1)an+2 − an)x
n.

So an+2 =
1

(n+1)(n+2)an, and plugging in initial values we recover

the power series for sin(x), cos(x).
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The SST (Saito, Sturmfels, Takayama) algorithm

Inputs:

A regular holonomic D-ideal I

A direction w to expand in, which is in the interior of a
Gröbner cone Cw of I

Output:

A list of starting monomials

For each starting monomial xA log(x)B, with A ∈ C and
B ∈ Z, a Nilsson series

xA
∑

p, 0≤bi≤rk(I)∈Z

cpbx
p log(x)b

which converges for z such that (− log(|z1|), ...,− log(|zn|)) is
in a translate of C∗

w.

Source: Gröbner Deformations of Hypergeometric Differential
Equations (Mutsumi Saito, Bernd Sturmfels, Nobuki Takayama)
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Example of SST

Example (Scattering function of three particles)

The Gröbner fan lives in R3/R(1, 1, 1) and looks like

The starting monomials are:

x−1
1 , x−1

1 log

(
x1

x2

)
, x−1

1 log

(
x1

x3

)
, x−1

1 log

(
x1

x2

)
log

(
x1

x3

)
.
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Comparing Methods from Physics and D-modules

Solutions from physics:

f1(x1, x2, x3) =
1√
λ

[
Li2 (τ2) + Li2 (τ3) +

π2

6

+
1

2
log

(
τ3
τ2

)
log

(
1− τ3
1− τ2

)
+

1

2
log (−τ2) log (−τ3)

]
,

f2(x1, x2, x3) =
1√
λ
log

(
x1 − x2 − x3 −

√
λ

x1 − x2 − x3 +
√
λ

)
,

f3(x1, x2, x3) =
1√
λ
log

(
x2 − x1 − x3 −

√
λ

x2 − x1 − x3 +
√
λ

)
,

f4(x1, x2, x3) =
1√
λ
,

where

τ2 = − 2x2

(x1 − x2 − x3 −
√
λ)

, τ3 = − 2x3

(x1 − x2 − x3 −
√
λ)

.
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Outlook

Can D-module techniques be used to find scattering
amplitudes of systems with more particles? (Involves finding
more differential equations)

Can we use SST to catalogue series expansions of multivariate
functions?
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Thanks for listening!
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