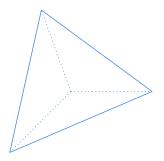


The positive Grassmannian

The *projective simplex* is

$$\Delta_n := \mathsf{conv}\{e_0, \ldots, e_n\} \subset \mathbb{P}^n.$$



The *Grassmannian* parameterizes k-spaces in \mathbb{R}^n , and is a projective variety via

$$\operatorname{\mathsf{Gr}}(k,n) \to \mathbb{P}(\wedge^k \mathbb{R}^n)$$

 $\operatorname{\mathsf{span}}(v_1,\ldots,v_k) \mapsto v_1 \wedge \ldots \wedge v_k.$

The positive Grassmannian is

$$\operatorname{Gr}_{\geq 0}(k,n) := \Delta_{\binom{n}{k}-1} \cap \operatorname{Gr}(k,n).$$

Let Z be a $(k+m) \times n$ matrix with positive maximal minors.

$$\wedge^k Z: \mathbb{P}(\wedge^k \mathbb{R}^n) \longrightarrow \mathbb{P}(\wedge^k \mathbb{R}^{k+m})$$
$$v_1 \wedge \ldots \wedge v_k \mapsto Z v_1 \wedge \ldots \wedge Z v_k.$$

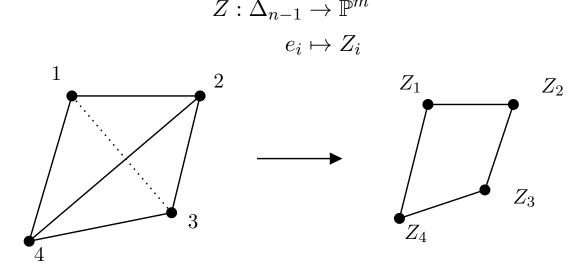
The amplituhedron $A_{k,m,n}(Z)$ is the image of $Gr_{>0}(k,n)$.

Let Z be a $(k+m) \times n$ matrix with positive maximal minors.

$$\wedge^k Z: \mathbb{P}(\wedge^k \mathbb{R}^n) \longrightarrow \mathbb{P}(\wedge^k \mathbb{R}^{k+m})$$
$$v_1 \wedge \ldots \wedge v_k \mapsto Z v_1 \wedge \ldots \wedge Z v_k.$$

The amplituhedron $A_{k,m,n}(Z)$ is the image of $Gr_{\geq 0}(k,n)$.

Example (k = 1)



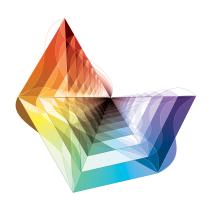
The image is a cyclic polytope.

... computes amplitudes in tree-level $\mathcal{N}=4$ super Yang-Mills.



[Andy Gilmore, 2013]

... computes amplitudes in tree-level $\mathcal{N}=4$ super Yang-Mills.



[Andy Gilmore, 2013]

The twistor coordinates wrt Z on Gr(k, k+2) are

$$\langle ij \rangle := \det[Z_i Z_j Y^T], \qquad [Y] \in \mathsf{Gr}(k, k+2).$$

... computes amplitudes in tree-level $\mathcal{N}=4$ super Yang-Mills.

[Andy Gilmore, 2013]

The twistor coordinates wrt Z on Gr(k, k+2) are

$$\langle ij \rangle := \det[Z_i Z_j Y^T], \qquad [Y] \in \mathsf{Gr}(k, k+2).$$

On Gr(2,4), we have

$$\langle 12 \rangle = (z_{1i}z_{2j} - z_{2i}z_{1j})p_{34} - (z_{1i}z_{3j} - z_{3i}z_{1j})p_{24} + (z_{2i}z_{3j} - z_{3i}z_{2j})p_{14} + \dots$$

... computes amplitudes in tree-level $\mathcal{N}=4$ super Yang-Mills.

[Andy Gilmore, 2013]

The twistor coordinates wrt Z on Gr(k, k+2) are

$$\langle ij \rangle := \det[Z_i Z_j Y^T], \qquad [Y] \in \mathsf{Gr}(k, k+2).$$

On Gr(2,4), we have

$$\langle 12 \rangle = (z_{1i}z_{2j} - z_{2i}z_{1j})p_{34} - (z_{1i}z_{3j} - z_{3i}z_{1j})p_{24} + (z_{2i}z_{3j} - z_{3i}z_{2j})p_{14} + \dots$$

This vanishes on lines [Y] meeting the line $Z_1 \wedge Z_2$ in \mathbb{P}^3 .

Boundaries of the amplituhedron

Theorem (Ranestad–Sinn–Telen 24)

The algebraic boundary of the m=2 amplituhedron is given by $\langle 12 \rangle, \ldots, \langle n-1 \, n \rangle, \langle 1n \rangle = 0.$

Theorem (Even-Zohar-Lakrec-Tessler 25)

The algebraic boundary of the m=4 amplituhedron is given by $\langle i\,i+1\,j\,j+1\rangle=0,$ for $1\leq i< j\leq n.$

Boundaries of the amplituhedron

Theorem (Ranestad–Sinn–Telen 24)

The algebraic boundary of the m=2 amplituhedron is given by $\langle 12 \rangle, \ldots, \langle n-1 \, n \rangle, \langle 1n \rangle = 0.$

Theorem (Even-Zohar-Lakrec-Tessler 25)

The algebraic boundary of the m=4 amplituhedron is given by $\langle i\,i+1\,j\,j+1\rangle=0,$ for $1\leq i< j\leq n.$

The exterior cyclic polytope of Z is

$$C_{k,m,n}(Z) := \wedge^k Z(\Delta_{\binom{n}{k}-1}) \subset \mathbb{P}(\wedge^k \mathbb{R}^{k+m})$$

The exterior cyclic polytope of Z is

$$C_{k,m,n}(Z) := \wedge^k Z(\Delta_{\binom{n}{k}-1}) \subset \mathbb{P}(\wedge^k \mathbb{R}^{k+m})$$

$$= \operatorname{conv}(Z_{i_1} \wedge \ldots \wedge Z_{i_k} : \{i_1, \ldots, i_k\} \subset [n]).$$

The exterior cyclic polytope of Z is

$$C_{k,m,n}(Z) := \wedge^k Z(\Delta_{\binom{n}{k}-1}) \subset \mathbb{P}(\wedge^k \mathbb{R}^{k+m})$$
$$= \operatorname{conv}(Z_{i_1} \wedge \ldots \wedge Z_{i_k} : \{i_1, \ldots, i_k\} \subset [n]).$$

Example (The polytope $C_{2,1,4}(Z)$)

In $(\mathbb{P}^2)^*$, we have

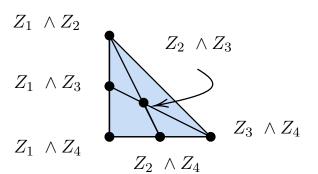
$$Z_1 \wedge Z_2$$
 $Z_2 \wedge Z_3$
 $Z_1 \wedge Z_3$
 $Z_1 \wedge Z_4$
 $Z_2 \wedge Z_4$

The exterior cyclic polytope of Z is

$$\begin{split} C_{k,m,n}(Z) &:= \wedge^k Z(\Delta_{\binom{n}{k}-1}) \ \subset \ \mathbb{P}(\wedge^k \mathbb{R}^{k+m}) \\ &= \mathsf{conv}(Z_{i_1} \wedge \ldots \wedge Z_{i_k} \ : \ \{i_1, \ldots, i_k\} \subset [n]). \end{split}$$

Example (The polytope $C_{2,1,4}(Z)$)

In $(\mathbb{P}^2)^*$, we have

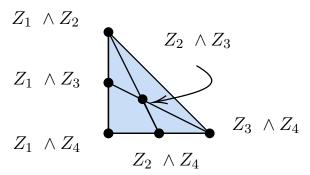


Theorem (Mazzucchelli-P)

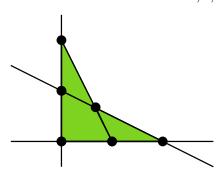
The polytope $C_{k,m,n}(Z)$ is the convex hull of $A_{k,m,n}(Z)$.

An example

The polytope $C_{2,1,4}(Z)$ looks like



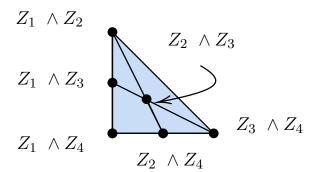
[Karp–Williams 17] The amplituhedron $\mathcal{A}_{2,1,4}(Z)$ looks like



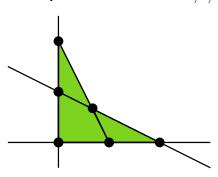
Not convex!

An example

The polytope $C_{2,1,4}(Z)$ looks like



[Karp–Williams 17] The amplituhedron $\mathcal{A}_{2,1,4}(Z)$ looks like



Not convex!

Theorem (Mazzucchelli-P)

The amplituhedron $A_{2,2,n}(Z)$ equals $C_{2,2,n}(Z) \cap Gr(2,4)$.

An example with k=m=2 and n=6

Fix real numbers 0 < a < b < c < d < e < f and consider

$$Z = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & e & f \\ a^2 & b^2 & c^2 & d^2 & e^2 & f^2 \\ a^3 & b^3 & c^3 & d^3 & e^3 & f^3 \end{pmatrix}.$$

Then $C_{2,2,6}(Z)$ is the convex hull in \mathbb{P}^5 of the 15 columns of $\wedge^2 Z$:

$$\begin{pmatrix} a-b & a-c & a-d & a-e & \cdots & d-f & e-f \\ a^2-b^2 & a^2-c^2 & a^2-d^2 & a^2-e^2 & \cdots & d^2-f^2 & e^2-f^2 \\ a^3-b^3 & a^3-c^3 & a^3-d^3 & a^3-e^3 & \cdots & d^3-f^3 & e^3-f^3 \\ a^2b-ab^2 & a^2c-ac^2 & a^2d-ad^2 & a^2e-ae^2 & \cdots & d^2f-df^2 & e^2f-ef^2 \\ a^3b-ab^3 & a^3c-ac^3 & a^3d-ad^3 & a^3e-ae^3 & \cdots & d^3f-df^3 & e^3f-ef^3 \\ a^3b^2-a^2b^3 & a^3c^2-a^2c^3 & a^3d^2-a^2d^3 & a^3e^2-a^2e^3 & \cdots & d^3f^2-d^2f^3 & e^3f^2-e^2f^3 \end{pmatrix} \cdot \cdot$$

An example with k=m=2 and n=6

Fix real numbers 0 < a < b < c < d < e < f and consider

$$Z = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & e & f \\ a^2 & b^2 & c^2 & d^2 & e^2 & f^2 \\ a^3 & b^3 & c^3 & d^3 & e^3 & f^3 \end{pmatrix}.$$

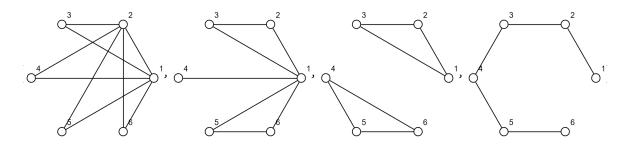
Then $C_{2,2,6}(Z)$ is the convex hull in \mathbb{P}^5 of the 15 columns of $\wedge^2 Z$:

$$\begin{pmatrix} a-b & a-c & a-d & a-e & \cdots & d-f & e-f \\ a^2-b^2 & a^2-c^2 & a^2-d^2 & a^2-e^2 & \cdots & d^2-f^2 & e^2-f^2 \\ a^3-b^3 & a^3-c^3 & a^3-d^3 & a^3-e^3 & \cdots & d^3-f^3 & e^3-f^3 \\ a^2b-ab^2 & a^2c-ac^2 & a^2d-ad^2 & a^2e-ae^2 & \cdots & d^2f-df^2 & e^2f-ef^2 \\ a^3b-ab^3 & a^3c-ac^3 & a^3d-ad^3 & a^3e-ae^3 & \cdots & d^3f-df^3 & e^3f-ef^3 \\ a^3b^2-a^2b^3 & a^3c^2-a^2c^3 & a^3d^2-a^2d^3 & a^3e^2-a^2e^3 & \cdots & d^3f^2-d^2f^3 & e^3f^2-e^2f^3 \end{pmatrix} \cdot \cdot$$

Substituting (1,3,4,7,8,9), it has f-vector (15,75,143,111,30). Among the 30 facets, there are 15 4-simplices, six double pyramids over pentagons, three cyclic polytopes C(4,6), and three with f-vector (9,26,30,13).

Combinatorics changes as Z varies

Identify vectors $Z_i \wedge Z_j$ with edges ij of a complete graph. There are 30 facets, with four types of supporting hyperplanes:



For (1, 3, 4, 7, 8, f), three facets for f < 45/7 are

 $\{12, 23, 34, 45, 56\}, \{12, 23, 34, 56, 16\}, \{12, 16, 34, 45, 56\}.$

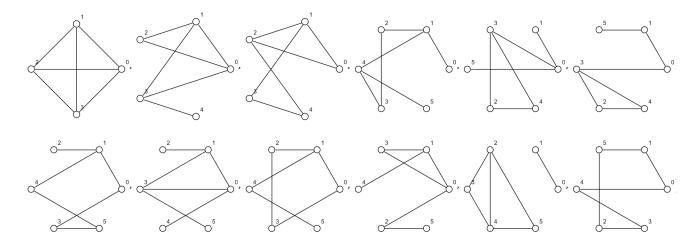
and for f > 45/7 change to

 $\{12, 16, 23, 34, 45\}, \{12, 16, 23, 45, 56\} \{16, 23, 34, 45, 56\}.$

Example, continued

Of the $\binom{15}{6}$ minors of $\wedge^2 Z$, 1660 are zero and 3345 are nonzero.

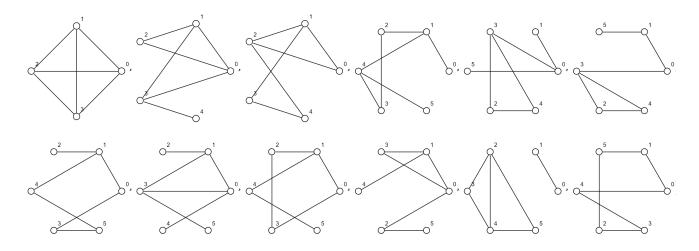
Symmetry classes of minors:



Example, continued

Of the $\binom{15}{6}$ minors of $\wedge^2 Z$, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:



Sign of each minor is fixed by $a < \ldots < f$ except for

$$[12, 23, 34, 45, 56, 16] =$$

$$(a-c)(a-d)(a-e)(b-d)(b-e)(b-f)(d-f)(c-e)(c-f)$$

$$\cdot (abd-abe-acd+acf+ade-adf+bce-bcf-bde+bef+cdf-cef).$$

Results and computations

Theorem (Mazzucchelli-P)

The combinatorial type of $C_{2,2,n}(Z)$ is constant for positive $4 \times n$ matrices Z outside the closed locus where the polynomial $\det[Z_{12} \ Z_{23} \ Z_{34} \ Z_{45} \ Z_{56} \ Z_{16}]$ or one of its permutations is zero.

In Plücker coordinates on $Z \in Gr(4, n)$:

 $p_{1234}p_{1356}p_{2456} - p_{1235}p_{1346}p_{2456} + p_{1235}p_{1246}p_{3456}$.

Results and computations

Theorem (Mazzucchelli-P)

The combinatorial type of $C_{2,2,n}(Z)$ is constant for positive $4 \times n$ matrices Z outside the closed locus where the polynomial $\det[Z_{12} \ Z_{23} \ Z_{34} \ Z_{45} \ Z_{56} \ Z_{16}]$ or one of its permutations is zero.

In Plücker coordinates on $Z \in Gr(4, n)$:

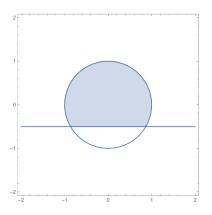
$$p_{1234}p_{1356}p_{2456} - p_{1235}p_{1346}p_{2456} + p_{1235}p_{1246}p_{3456}$$
.

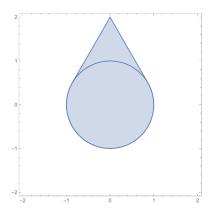
For k = m = 2, small f-vectors include:

n = 5	:	10	35	55	40	12	1
n = 6	:	15	75	143	111	30	1
n = 7	:	21	147	328	282	82	1
n = 8	:	28	266	664	616	192	1
n = 9	:	36	450	1217	1191	390	1

The *polar dual* of a semialgebraic set $S \subset \mathbb{R}^n$ is

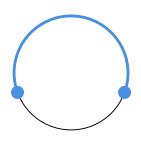
$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$

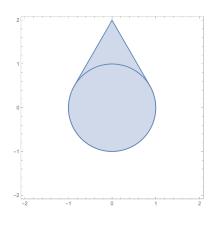




The *polar dual* of a semialgebraic set $S \subset \mathbb{R}^n$ is

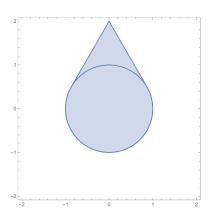
$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$





The *polar dual* of a semialgebraic set $S \subset \mathbb{R}^n$ is

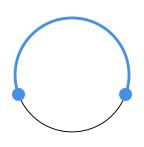
$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$



Observation: $S^* = \text{conv}(S)^*$. Very big!

The *polar dual* of a semialgebraic set $S \subset \mathbb{R}^n$ is

$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$





Observation: $S^* = \text{conv}(S)^*$. Very big! The *extendable dual amplituhedron* is

$$\mathcal{A}_{k,m,n}^* := Gr(m,k+m) \cap \operatorname{conv}(\mathcal{A}_{k,m,n})^* = Gr(m,k+m) \cap C_{k,m,n}^*.$$

The twist map

Define

$$W_i := Z_{i-m+1} \wedge Z_{i-m+2} \wedge \cdots \wedge Z_i \wedge \cdots \wedge Z_{i+k-1}, \qquad i \in [n].$$

The twist map is

$$au: \operatorname{Mat}_{>0}(k+m,n) \to \operatorname{Mat}_{>0}(k+m,n),$$

$$Z \mapsto W,$$

where W has columns W_1, \ldots, W_n . [Marsh–Scott 13]

Example

$$[Z_1 \ldots Z_6] \mapsto [Z_6 \wedge Z_1 \wedge Z_2 \quad Z_1 \wedge Z_2 \wedge Z_3 \quad \ldots \quad Z_5 \wedge Z_6 \wedge Z_1].$$

The twist map

Define

$$W_i := Z_{i-m+1} \wedge Z_{i-m+2} \wedge \cdots \wedge Z_i \wedge \cdots \wedge Z_{i+k-1}, \qquad i \in [n].$$

The twist map is

$$au: \operatorname{Mat}_{>0}(k+m,n) o \operatorname{Mat}_{>0}(k+m,n)\,,$$

$$Z \mapsto W\,,$$

where W has columns W_1, \ldots, W_n . [Marsh–Scott 13]

Example

$$[Z_1 \ldots Z_6] \mapsto [Z_6 \wedge Z_1 \wedge Z_2 \quad Z_1 \wedge Z_2 \wedge Z_3 \quad \ldots \quad Z_5 \wedge Z_6 \wedge Z_1].$$

Theorem (Mazzucchelli-P)

There is an equality

$$A_{2,2,n}(Z)^* = A_{2,2,n}(W).$$

 $\mathcal{A}_{2,2,n}(Z)^*$ is an amplituhedron for another particle configuration!

Duality of polytopes

The Schubert exterior cyclic polytope $\widetilde{C}_{k,m,n}(Z)$ is obtained from $C_{k,m,n}(Z)$ by deleting all facet inequalities whose supporting hyperplanes are not Schubert divisors.

Proposition (Mazzucchelli-P)

There is an equality

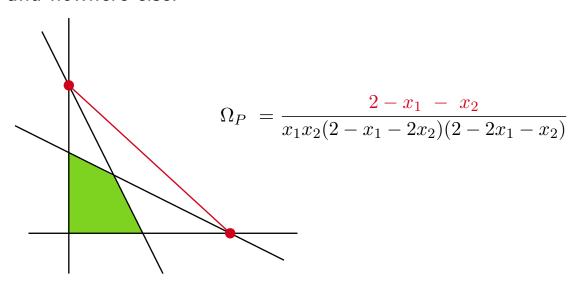
$$\widetilde{C}_{2,2,n}(Z) = C_{2,2,n}(W)^*.$$

Example

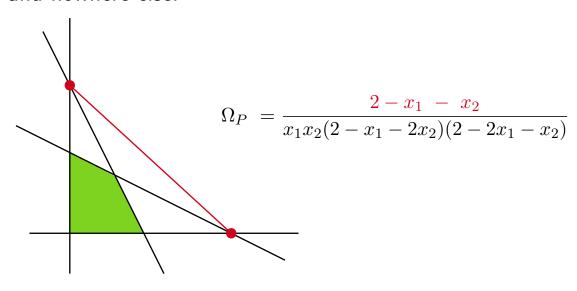
The f-vector of $C_{2,2,6}$ is

The f-vector of $\widetilde{C}_{2,2,6}$ is

A polytope P has a canonical function Ω_P with simple poles on ∂P and nowhere else:



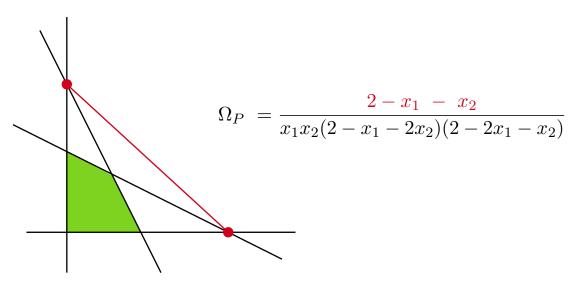
A polytope P has a canonical function Ω_P with simple poles on ∂P and nowhere else:



Laplace integral representation:

$$\Omega_{\hat{P}}(x) = \frac{1}{m!} \int_{y \in \hat{P}^*} e^{-x \cdot y} d^{m+1} y.$$

A polytope P has a canonical function Ω_P with simple poles on ∂P and nowhere else:



Laplace integral representation:

$$\Omega_{\hat{P}}(x) = \frac{1}{m!} \int_{y \in \hat{P}^*} e^{-x \cdot y} d^{m+1} y.$$

What about $\mathcal{A}^*_{2,2,n}$ and the Parke-Taylor form?

Canonical function of $A_{k,2,n}$

On the m=2 amplituhedron we have the Parke-Taylor form

$$\Omega_{\mathcal{A}} = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}.$$

Parke and Taylor, An amplitude for n gluon scattering (1986):

$$|\mathcal{M}_n(--+++\ldots)|^2 = c_n(g,N) [(1\cdot 2)^4 \sum_{P} \frac{1}{(1\cdot 2)(2\cdot 3)(3\cdot 4)\ldots(n\cdot 1)} + \mathcal{O}(N^{-2}) + \mathcal{O}(g^2)]$$

Is there $\mathcal{A}_{k,2,n}^*$ and Borel measure $d\mu$ positive on $\mathcal{A}_{k,2,n}^*$ st

$$\Omega_{\mathcal{A}}(x) = \int_{\Delta^*} e^{-x \cdot y} d\mu(y)$$
 ?

See [Henn-Raman 24], [Mazzucchelli-Raman 25] ...

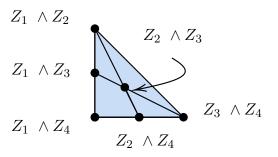
The wedge power matroid

The wedge power matroid $W_{k,m,n}$ is the matroid of the point configuration $Z_{i_1} \wedge \ldots \wedge Z_{i_k}$, for Z generic*.

The wedge power matroid

The wedge power matroid $W_{k,m,n}$ is the matroid of the point configuration $Z_{i_1} \wedge \ldots \wedge Z_{i_k}$, for Z generic*.

Example



We have

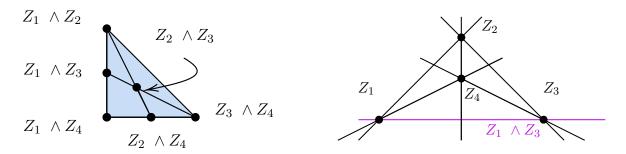
$$aZ_2 + bZ_3 + cZ_4 = Z_1 \implies aZ_1 \wedge Z_2 + bZ_1 \wedge Z_3 + cZ_1 \wedge Z_4 = Z_1 \wedge Z_1 = 0.$$

Non-bases are $\{12, 13, 14\}, \{12, 23, 24\}, \{13, 23, 34\}, \{14, 24, 34\}.$

The wedge power matroid

The wedge power matroid $W_{k,m,n}$ is the matroid of the point configuration $Z_{i_1} \wedge \ldots \wedge Z_{i_k}$, for Z generic*.

Example



We have

$$aZ_2 + bZ_3 + cZ_4 = Z_1 \implies aZ_1 \wedge Z_2 + bZ_1 \wedge Z_3 + cZ_1 \wedge Z_4 = Z_1 \wedge Z_1 = 0.$$

Non-bases are $\{12, 13, 14\}, \{12, 23, 24\}, \{13, 23, 34\}, \{14, 24, 34\}.$

Remark

The matroid $W_{k,1,k+1}$ is the matroid of the braid arrangement.

The wedge power matroid $W_{k,m,n}$

The case m=1:

Matroid of discriminantal arrangement of n general points in \mathbb{P}^k [Manin–Schechtman 89]

The case k=2:

- ▶ Dual of Kalai's hyperconnectivity matroid $\mathcal{H}_{n-m-2}(n)$ [Kalai 85, Brakensiek–Dhar–Gao–Gopi–Larson 24]
- ▶ $\mathcal{H}_d(n)$ is the algebraic matroid of $n \times n$ skew-symmetric matrices of rank at most d [Ruiz–Santos 23]

The case k=2 and n=m+4:

- ▶ Graphical characterization of bases of $\mathcal{H}_2(n)$ [Bernstein 17]
- $ightharpoonup \mathcal{H}_2(n)$ is the algebraic matroid of $\mathsf{Gr}(2,n)$

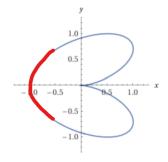
Upshot: describing bases of $W_{k,m,n}$ and faces of $C_{k,m,n}(Z)$ is hard!

Extendable convexity

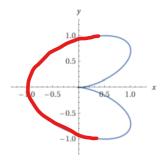
A set $S \subset X$ in an embedded projective variety is *extendably* convex if

$$S = \operatorname{conv}(S) \cap X$$
.

First considered by Busemann (1961) for X = Gr(k, n).



Extendably convex



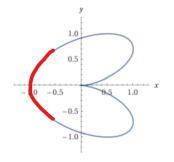
Not extendably convex

Extendable convexity

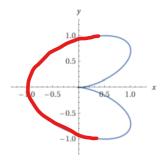
A set $S \subset X$ in an embedded projective variety is *extendably* convex if

$$S = \operatorname{conv}(S) \cap X$$
.

First considered by Busemann (1961) for X = Gr(k, n).



Extendably convex



Not extendably convex

Theorem (Mazzucchelli-P)

The amplituhedron $A_{2,2,n}(Z)$ equals $C_{2,2,n}(Z) \cap Gr(2,4)$.

Corollary (Mazzuchelli-P)

The amplituhedron $A_{2,2,n}(Z)$ is extendably convex.

Complete monotonicity

By the Bernstein–Hausdorff–Widder-Choquet theorem, Ω_P is completely monotonic:

$$(-1)^r \partial_{\nu_1} \dots \partial_{\nu_r} \Omega_{\hat{P}>0}$$

for all $r > 0, \nu_i, x \in \hat{P}$.