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The positive Grassmannian
The projective simplex is

A, = conv{eg, ..., e} C P".

The Grassmannian parameterizes k-spaces in R™, and is a
projective variety via

Gr(k,n) — P(A*R")
span(vi, ..., Vg) — U1 A ... A Up.
The positive Grassmannian is

Grzo(k,n) = A(n)_l M Gr(k,n)

k



The amplituhedron

Let Z be a (k + m) x n matrix with positive maximal minors.
AFZ o P(AFR™) --5 P(AFRF™)
VIA...NV. = Zuvi AN... N\ Zvg.
The amplituhedron Ay n(Z) is the image of Gr>o(k,n).



The amplituhedron

Let Z be a (k + m) x n matrix with positive maximal minors.
AFZ o P(AFR™) --5 P(AFRF™)
VIA...NV. = Zuvi AN... N\ Zvg.
The amplituhedron Ay n(Z) is the image of Gr>o(k,n).
Example (£ = 1)
Z A, — P
e; — Z;

4

The image is a cyclic polytope.
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(12) = (z1522j—22i21j)P34— (2123 — 231215 ) P2a~+(22i 23— 23i 225 ) p1a+. . -



The amplituhedron

. computes amplitudes in tree-level A/ = 4 super Yang-Mills.

[Andy Gilmore, 2013]
The twistor coordinates wrt Z on Gr(k, k + 2) are

(ij) == det[Z; Z; Y], Y] € Gr(k,k + 2).
On Gr(2,4), we have
(12) = (215225 —22i21)P3a— (21423 — 231215 ) P24+ (221 23— 23i 22§ ) D14+ - -

This vanishes on lines [Y] meeting the line Z; A Z3 in P,



Boundaries of the amplituhedron

Theorem (Ranestad—Sinn—Telen 24)

The algebraic boundary of the m = 2 amplituhedron is given by
(12), ..., (n—1n),(In) = 0.

Theorem (Even-Zohar—Lakrec—Tessler 25)

The algebraic boundary of the m = 4 amplituhedron is given by
(ti+1j74+1)=0,for1 <i<j<n.
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Exterior cyclic polytopes
The exterior cyclic polytope of Z is

Ck:,m,n(Z) = /\kZ(A(")_l) - P(/\kRk+m)

k

= COI‘]V(ZZ'1 N ... /\Zik; : {’1:1,.. . ,Zk} C [n])

Example (The polytope Cy 1 4(7))

In (P?)*, we have

Z1 N 2y
o N Zs3
Z1 N Z3
Z3 N Zy
Z1 N\ Zy
oy Ny

Theorem (Mazzucchelli—-P)
The polytope Cy mn(Z) is the convex hull of Agmn(Z).



An example
The polytope Co 1 4(Z) looks like

YARAYZ)
oy N 3
Z1 N 23
Z3 N Zy
Z1 N2y
Loy N2y

[Karp=Williams 17| The amplituhedron Ay 1 4(Z) looks like

Not convex!



An example
The polytope Co 1 4(Z) looks like

YARAYZ)
oy N 3
Z1 N 23
Z3 N Zy
Z1 N2y
Loy N2y

[Karp=Williams 17| The amplituhedron Ay 1 4(Z) looks like

Not convex!

Theorem (Mazzucchelli—P)
The amplituhedron A3 2, (Z) equals Co2,(Z) N Gr(2,4).



An example with k =m =2 and n =6

Fix real numbers 0 < a < b<c<d<e< f and consider

1 1 1 1 1 1

7 a b ¢ d e f
= a2 2 2 &2 f

ad BB B3 f

Then Cy26(Z) is the convex hull in P° of the 15 columns of A%Z :

a—> a—c a—d a—e d—f e—f
a2 _ b2 a2 _ o2 a2 _ 42 a2 _ o2 a2 — f2 e2 _ §2
a3 — b3 a3 _ 3 a3 — g3 03 _ o3 a3 — f3 3 _ f3
a’b — ab? a’c — ac? a’d — ad? a’e — ae? (12f—(1f2 €2f—ef2
a3b — ab’ alc — ac’ a3d — ad? ale — ae3 d3f—df3 egf—ef?’
a3b? — o213 alc? — a2 a3d? — a?d’ ale? — a2e3

d3f2 _ 253 oB3f2 _ G243



An example with k =m =2 and n =6

Fix real numbers 0 < a < b<c<d<e< f and consider

1 1
a c

S =

a? b2 2 e2
a3 BB B e3 f3

Then Cy26(Z) is the convex hull in P° of the 15 columns of A%Z :

a—> a—c a—d a—e d—f e—f
a2 _ b2 a2 _ o2 a2 _ 42 a2 _ o2 a2 — f2 e2 _ §2
a3 — p3 a3 _ 3 a3 — g3 03 _ o3 a3 — f3 3 _ f3
a’b — ab? a’c — ac? a’d — ad? a’e — ae? . d2f — df2 le — ef2
a3b — ab’ alc — ac’ a3d — ad? ale — ae3 d3f — df3 63f — ef3
032 — 42p3 3,2 _ 4203 4342 — o243 Be2 _ 23 .. g3p2 _ 243 32 _ 243

Substituting (1,3,4,7,8,9), it has f-vector (15,75,143,111, 30).
Among the 30 facets, there are 15 4-simplices, six double pyramids

over pentagons, three cyclic polytopes C(4,6), and three with
f-vector (9,26, 30,13).



Combinatorics changes as Z varies

Identify vectors Z; A Z; with edges ¢j of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1 1
b O ) )
d// 5 6 5 6

For (1,3,4,7,8, f), three facets for f < 45/7 are

{12,23,34, 45,56}, {12,23,34,56,16}, {12,16,34, 45,56} .
and for f > 45/7 change to

{12,16,23,34,45}, {12,16,23,45,56} {16,23, 34, 45,56} .



Example, continued
Of the (7)) minors of A2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

<




Example, continued
Of the (7)) minors of A2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:
) 2 1 3 1 OS 1
0) 0J 45 \0J 05 ROJ 3 \

<< 2lE

Sign of each minor is fixed by a < ... < f except for

12,23, 34, 45, 56, 16] =

(a—c)(a—d)(a—e)(b—d)(b—e)(b—f)(d—f)(c —€e)(c = [)
- (abd — abe — acd 4+ acf + ade — adf + bce — bef — bde 4 bef + cdf — cef).



Results and computations

Theorem (Mazzucchelli—P)

The combinatorial type of Ca2,(Z) is constant for positive 4 x n
matrices Z outside the closed locus where the polynomial
det[212 Z93 234 Las Lsg Z16] or one of its permutations is zero.

In Pliicker coordinates on Z € Gr(4,n):

DP1234P1356P2456 — P1235P1346P2456 + P1235P1246P3456 -



Results and computations

Theorem (Mazzucchelli—P)

The combinatorial type of Ca2,(Z) is constant for positive 4 x n
matrices Z outside the closed locus where the polynomial
det|Z1o Zog Z34 Zas Zse Zi6] or one of its permutations is zero.

In Pliicker coordinates on Z € Gr(4,n):

D1234P1356P2456 — P1235P1346P2456 T P1235P1246D3456 -
For k = m = 2, small f-vectors include:

n=5>5: 10 35 55 40 12
n=6: 15 75 143 111 30
n=7: 21 147 328 282 82
n=8 : 28 266 664 616 192
n=9 : 36 450 1217 1191 390

G T W T U O S



What is a dual amplituhedron?

The polar dual of a semialgebraic set S C R" is

S* = {l e (RY* : I(z) > -1VzecS).

P
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What is a dual amplituhedron?

The polar dual of a semialgebraic set S C R" is

S*¥={le R")" : l(z)>—-1VxeS}.

Observation: S* = conv(S)*. Very big!
The extendable dual amplituhedron is

Ak = Gr(m, k+m)Nconv(Ag m )" = Gr(m, k+m)NCy . ..



The twist map
Define

Wi =21t NZi—maa N NZy N N Zjsg—1, ’LE[n]

The twist map is

7 : Matsg(k +m,n) — Matsg(k +m,n),
Z =W,
where W has columns Wy, ..., W,. [Marsh-Scott 13|

Example
[Zl ...Z6]|—>[Z6/\Z1/\Z2 ZANZogNd3 ... Z5/\Z6/\Zl].



The twist map
Define

Wi =21t NZi—maa N NZy N N Zjsg—1, ’LE[n]
The twist map is
7 : Matso(k +m,n) — Matsg(k + m,n),
Z =W,

where W has columns Wy, ..., W,. [Marsh-Scott 13|
Example

[Zl Zﬁ] —> [Zﬁ/\Zl/\ZQ ZANZogNd3 ... Z5/\ZG/\Zl].
Theorem (Mazzucchelli—P)

There is an equality
A2, (Z)" = A220(W).

Az2,(Z)* is an amplituhedron for another particle configuration!



Duality of polytopes
The Schubert exterior cyclic polytope Ci, mn(Z) is obtained from

Crmn(Z) by deleting all facet inequalities whose supporting
hyperplanes are not Schubert divisors.

Proposition (Mazzucchelli-P)
There is an equality

62,2,71(2) = Chopn(W)".
Example
The f-vector of Ca 256 is
(15,75,143,111, 30).
The f-vector of 52,2,6 is

(30,111, 143, 75, 15).



What is a dual amplituhedron?

A polytope P has a canonical function p with simple poles on
OP and nowhere else:
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What is a dual amplituhedron?

A polytope P has a canonical function p with simple poles on
OP and nowhere else:

Laplace integral representation:

1

Qs(x) = —/ e Ty,
P m! J,ep

What about A3, ,, and the Parke-Taylor form?






Canonical function of A2,

On the m = 2 amplituhedron we have the Parke-Taylor form

(12)*
(12)(23) .. (nl)’

Qg =

Parke and Taylor, An amplitude for n gluon scattering (1986):

1
wlo M Y e HE D

+ O(N7%) + 0(¢%) ]

IMn('——+++...)I2 =

Is there A}, and Borel measure du positive on A7 ,, st

Q)= [ eduty)

See [Henn-Raman 24|, [Mazzucchelli-Raman 25] ...



The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ... A Z;,, for Z generic*.

k!
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The wedge power matroid Wy, ., ,, is the matroid of the point
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Example

Z1 N Zy

Zy N 23
Z1 N Zs
Z3 N2y
Z1 N2y
Lo N Ly

We have

aZo+bls+cly = 21 — aZ1N\Lo+bZiNLs+cliNLy = Z1NZ1 = 0.

Non-bases are {12,13,14},{12,23,24},{13,23,34}, {14, 24, 34}.



The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ...\ Z;,, for Z generic*.

Example

YARAYZ

Zy N Z3
Z1 N s
Z3 N Zy
Z1 N2y
Lo N Ly

We have

aZo+bls+cly = 21 — aZ1N\Zo+bZiNLs+cZiNLy = Z1NZ1 = 0.

Non-bases are {12,13,14},{12,23,24},{13,23,34}, {14, 24, 34}.

Remark
The matroid Wy, 1 141 is the matroid of the braid arrangement.



The wedge power matroid Wy, ,

The case m = 1:

» Matroid of discriminantal arrangement of n general points
in P* [Manin—Schechtman 89]

The case k = 2:

» Dual of Kalai's hyperconnectivity matroid H,,—m,—2(n)
[Kalai 85, Brakensiek—Dhar—Gao—Gopi—Larson 24]

» Hi(n) is the algebraic matroid of n x n skew-symmetric
matrices of rank at most d [Ruiz-Santos 23]

Thecase k=2 and n =m + 4:
» Graphical characterization of bases of Ha(n) | Bernstein 17]
» 7Ho(n) is the algebraic matroid of Gr(2,n)

Upshot: describing bases of Wy, ,,, ,, and faces of Cj ,, n(Z) is hard!



Extendable convexity

A set S C X in an embedded projective variety is extendably
convex if
S = conv(S) N X.

First considered by Busemann (1961) for X = Gr(k,n).

Extendably convex Not extendably convex



Extendable convexity

A set S C X in an embedded projective variety is extendably
convex if

S = conv(S) N X.
First considered by Busemann (1961) for X = Gr(k,n).

Extendably convex Not extendably convex

Theorem (Mazzucchelli—-P)

The amplituhedron Az 2., (Z) equals Co2,(Z) N Gr(2,4).
Corollary (Mazzuchelli-P)

The amplituhedron A2, (Z) is extendably convex.



Complete monotonicity

By the Bernstein—Hausdorf(~Widder-Choquet theorem, (2p is
completely monotonic:

(=1)" By, - B, Vs

forall r > 0,v;,x € P.



