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The positive Grassmannian
The projective simplex is

∆n := conv{e0, . . . , en} ⊂ Pn.

The Grassmannian parameterizes k-spaces in Rn, and is a
projective variety via

Gr(k, n) → P(∧kRn)

span(v1, . . . , vk) 7→ v1 ∧ . . . ∧ vk.

The positive Grassmannian is

Gr≥0(k, n) := ∆(nk)−1 ∩ Gr(k, n).



The amplituhedron
Let Z be a (k +m)× n matrix with positive maximal minors.

∧kZ : P(∧kRn) 99K P(∧kRk+m)

v1 ∧ . . . ∧ vk 7→ Zv1 ∧ . . . ∧ Zvk.

The amplituhedron Ak,m,n(Z) is the image of Gr≥0(k, n).

Example (k = 1)

Z : ∆n−1 → Pm

ei 7→ Zi

Z1 Z2

Z3

Z4

1 2

3

4

The image is a cyclic polytope.
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The amplituhedron
... computes amplitudes in tree-level N = 4 super Yang-Mills.

[Andy Gilmore, 2013]

The twistor coordinates wrt Z on Gr(k, k + 2) are

⟨ij⟩ := det[Zi Zj Y
T ], [Y ] ∈ Gr(k, k + 2).

On Gr(2, 4), we have

⟨12⟩ = (z1iz2j−z2iz1j)p34−(z1iz3j−z3iz1j)p24+(z2iz3j−z3iz2j)p14+. . .

This vanishes on lines [Y ] meeting the line Z1 ∧ Z2 in P3.
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Boundaries of the amplituhedron

Theorem (Ranestad–Sinn–Telen 24)

The algebraic boundary of the m = 2 amplituhedron is given by
⟨12⟩, . . . , ⟨n− 1n⟩, ⟨1n⟩ = 0.

Theorem (Even-Zohar–Lakrec–Tessler 25)

The algebraic boundary of the m = 4 amplituhedron is given by
⟨i i+ 1 j j + 1⟩ = 0, for 1 ≤ i < j ≤ n.
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Exterior cyclic polytopes
The exterior cyclic polytope of Z is

Ck,m,n(Z) := ∧kZ(∆(nk)−1) ⊂ P(∧kRk+m)

= conv(Zi1 ∧ . . . ∧ Zik : {i1, . . . , ik} ⊂ [n]).

Example (The polytope C2,1,4(Z))

In (P2)∗, we have

Z1 ∧ Z2

Z1 ∧ Z3

Z1 ∧ Z4
Z2 ∧ Z4

Z3 ∧ Z4

Z2 ∧ Z3

Theorem (Mazzucchelli–P)

The polytope Ck,m,n(Z) is the convex hull of Ak,m,n(Z).



Exterior cyclic polytopes
The exterior cyclic polytope of Z is

Ck,m,n(Z) := ∧kZ(∆(nk)−1) ⊂ P(∧kRk+m)

= conv(Zi1 ∧ . . . ∧ Zik : {i1, . . . , ik} ⊂ [n]).

Example (The polytope C2,1,4(Z))

In (P2)∗, we have

Z1 ∧ Z2

Z1 ∧ Z3

Z1 ∧ Z4
Z2 ∧ Z4

Z3 ∧ Z4

Z2 ∧ Z3

Theorem (Mazzucchelli–P)

The polytope Ck,m,n(Z) is the convex hull of Ak,m,n(Z).



Exterior cyclic polytopes
The exterior cyclic polytope of Z is

Ck,m,n(Z) := ∧kZ(∆(nk)−1) ⊂ P(∧kRk+m)

= conv(Zi1 ∧ . . . ∧ Zik : {i1, . . . , ik} ⊂ [n]).

Example (The polytope C2,1,4(Z))

In (P2)∗, we have

Z1 ∧ Z2

Z1 ∧ Z3

Z1 ∧ Z4
Z2 ∧ Z4

Z3 ∧ Z4

Z2 ∧ Z3

Theorem (Mazzucchelli–P)

The polytope Ck,m,n(Z) is the convex hull of Ak,m,n(Z).



Exterior cyclic polytopes
The exterior cyclic polytope of Z is

Ck,m,n(Z) := ∧kZ(∆(nk)−1) ⊂ P(∧kRk+m)

= conv(Zi1 ∧ . . . ∧ Zik : {i1, . . . , ik} ⊂ [n]).

Example (The polytope C2,1,4(Z))

In (P2)∗, we have

Z1 ∧ Z2

Z1 ∧ Z3

Z1 ∧ Z4
Z2 ∧ Z4

Z3 ∧ Z4

Z2 ∧ Z3

Theorem (Mazzucchelli–P)

The polytope Ck,m,n(Z) is the convex hull of Ak,m,n(Z).



An example
The polytope C2,1,4(Z) looks like

Z1 ∧ Z2

Z1 ∧ Z3

Z1 ∧ Z4
Z2 ∧ Z4

Z3 ∧ Z4

Z2 ∧ Z3

[Karp–Williams 17] The amplituhedron A2,1,4(Z) looks like

Not convex!

Theorem (Mazzucchelli–P)

The amplituhedron A2,2,n(Z) equals C2,2,n(Z) ∩ Gr(2, 4).
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An example with k = m = 2 and n = 6

Fix real numbers 0 < a < b < c < d < e < f and consider

Z =

 1 1 1 1 1 1
a b c d e f
a2 b2 c2 d2 e2 f2

a3 b3 c3 d3 e3 f3

 .

Then C2,2,6(Z) is the convex hull in P5 of the 15 columns of ∧2Z :
a − b a − c a − d a − e · · · d − f e − f

a2 − b2 a2 − c2 a2 − d2 a2 − e2 · · · d2 − f2 e2 − f2

a3 − b3 a3 − c3 a3 − d3 a3 − e3 · · · d3 − f3 e3 − f3

a2b − ab2 a2c − ac2 a2d − ad2 a2e − ae2 · · · d2f − df2 e2f − ef2

a3b − ab3 a3c − ac3 a3d − ad3 a3e − ae3 · · · d3f − df3 e3f − ef3

a3b2 − a2b3 a3c2 − a2c3 a3d2 − a2d3 a3e2 − a2e3 · · · d3f2 − d2f3 e3f2 − e2f3

 .

Substituting (1, 3, 4, 7, 8, 9), it has f -vector (15, 75, 143, 111, 30).
Among the 30 facets, there are 15 4-simplices, six double pyramids
over pentagons, three cyclic polytopes C(4, 6), and three with
f -vector (9, 26, 30, 13).
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Combinatorics changes as Z varies

Identify vectors Zi ∧ Zj with edges ij of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

For (1, 3, 4, 7, 8, f), three facets for f < 45/7 are

{12, 23, 34, 45, 56}, {12, 23, 34, 56, 16}, {12, 16, 34, 45, 56} .

and for f > 45/7 change to

{12, 16, 23, 34, 45}, {12, 16, 23, 45, 56} {16, 23, 34, 45, 56} .



Example, continued
Of the

(
15
6

)
minors of ∧2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Sign of each minor is fixed by a < . . . < f except for

[12, 23, 34, 45, 56, 16] =

(a−c)(a−d)(a−e)(b−d)(b−e)(b−f)(d−f)(c− e)(c− f)

· (abd− abe− acd+ acf + ade− adf + bce− bcf − bde+ bef + cdf − cef) .
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Results and computations

Theorem (Mazzucchelli–P)

The combinatorial type of C2,2,n(Z) is constant for positive 4× n
matrices Z outside the closed locus where the polynomial
det[Z12 Z23 Z34 Z45 Z56 Z16] or one of its permutations is zero.

In Plücker coordinates on Z ∈ Gr(4, n):

p1234p1356p2456 − p1235p1346p2456 + p1235p1246p3456 .

For k = m = 2, small f -vectors include:

n = 5 : 10 35 55 40 12 1

n = 6 : 15 75 143 111 30 1

n = 7 : 21 147 328 282 82 1

n = 8 : 28 266 664 616 192 1

n = 9 : 36 450 1217 1191 390 1
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What is a dual amplituhedron?

The polar dual of a semialgebraic set S ⊂ Rn is

S∗ := {l ∈ (Rn)∗ : l(x) ≥ −1 ∀x ∈ S} .
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A∗
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∗ = Gr(m, k+m)∩C∗
k,m,n.



What is a dual amplituhedron?

The polar dual of a semialgebraic set S ⊂ Rn is

S∗ := {l ∈ (Rn)∗ : l(x) ≥ −1 ∀x ∈ S} .

Observation: S∗ = conv(S)∗. Very big!

The extendable dual amplituhedron is

A∗
k,m,n := Gr(m, k+m)∩conv(Ak,m,n)

∗ = Gr(m, k+m)∩C∗
k,m,n.



What is a dual amplituhedron?

The polar dual of a semialgebraic set S ⊂ Rn is

S∗ := {l ∈ (Rn)∗ : l(x) ≥ −1 ∀x ∈ S} .

Observation: S∗ = conv(S)∗. Very big!
The extendable dual amplituhedron is

A∗
k,m,n := Gr(m, k+m)∩conv(Ak,m,n)

∗ = Gr(m, k+m)∩C∗
k,m,n.



The twist map
Define

Wi := Zi−m+1 ∧ Zi−m+2 ∧ · · · ∧ Zi ∧ · · · ∧ Zi+k−1 , i ∈ [n] .

The twist map is

τ : Mat>0(k +m,n) → Mat>0(k +m,n) ,

Z 7→ W ,

where W has columns W1, . . . , Wn. [Marsh–Scott 13]

Example

[Z1 . . . Z6] 7→ [Z6 ∧ Z1 ∧ Z2 Z1 ∧ Z2 ∧ Z3 . . . Z5 ∧ Z6 ∧ Z1].

Theorem (Mazzucchelli–P)

There is an equality

A2,2,n(Z)∗ = A2,2,n(W ).

A2,2,n(Z)∗ is an amplituhedron for another particle configuration!
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Duality of polytopes
The Schubert exterior cyclic polytope C̃k,m,n(Z) is obtained from
Ck,m,n(Z) by deleting all facet inequalities whose supporting
hyperplanes are not Schubert divisors.

Proposition (Mazzucchelli–P)

There is an equality

C̃2,2,n(Z) = C2,2,n(W )∗.

Example

The f -vector of C2,2,6 is

(15, 75, 143, 111, 30).

The f -vector of C̃2,2,6 is

(30, 111, 143, 75, 15).



What is a dual amplituhedron?
A polytope P has a canonical function ΩP with simple poles on
∂P and nowhere else:

ΩP =
2− x1 − x2

x1x2(2− x1 − 2x2)(2− 2x1 − x2)

Laplace integral representation:

ΩP̂ (x) =
1

m!

∫
y∈P̂ ∗

e−x·ydm+1y.

What about A∗
2,2,n and the Parke-Taylor form?
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Thank you for listening!



Canonical function of Ak,2,n

On the m = 2 amplituhedron we have the Parke-Taylor form

ΩA =
⟨12⟩4

⟨12⟩⟨23⟩ . . . ⟨n1⟩
.

Parke and Taylor, An amplitude for n gluon scattering (1986):

Is there A∗
k,2,n and Borel measure dµ positive on A∗

k,2,n st

ΩA(x) =

∫
A∗

e−x·ydµ(y) ?

See [Henn-Raman 24], [Mazzucchelli-Raman 25] ...



The wedge power matroid

The wedge power matroid Wk,m,n is the matroid of the point
configuration Zi1 ∧ . . . ∧ Zik , for Z generic*.

Example

Z1 ∧ Z2

Z1 ∧ Z3

Z1 ∧ Z4
Z2 ∧ Z4

Z3 ∧ Z4

Z2 ∧ Z3

We have

aZ2+bZ3+cZ4 = Z1 =⇒ aZ1∧Z2+bZ1∧Z3+cZ1∧Z4 = Z1∧Z1 = 0.

Non-bases are {12, 13, 14}, {12, 23, 24}, {13, 23, 34}, {14, 24, 34}.

Remark
The matroid Wk,1,k+1 is the matroid of the braid arrangement.
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The wedge power matroid Wk,m,n

The case m = 1:

▶ Matroid of discriminantal arrangement of n general points
in Pk [Manin–Schechtman 89]

The case k = 2:

▶ Dual of Kalai’s hyperconnectivity matroid Hn−m−2(n)
[Kalai 85, Brakensiek–Dhar–Gao–Gopi–Larson 24]

▶ Hd(n) is the algebraic matroid of n× n skew-symmetric
matrices of rank at most d [Ruiz–Santos 23]

The case k = 2 and n = m+ 4:

▶ Graphical characterization of bases of H2(n) [ Bernstein 17]

▶ H2(n) is the algebraic matroid of Gr(2, n)

Upshot: describing bases of Wk,m,n and faces of Ck,m,n(Z) is hard!



Extendable convexity
A set S ⊂ X in an embedded projective variety is extendably
convex if

S = conv(S) ∩X.

First considered by Busemann (1961) for X = Gr(k, n).

Extendably convex Not extendably convex

Theorem (Mazzucchelli–P)

The amplituhedron A2,2,n(Z) equals C2,2,n(Z) ∩ Gr(2, 4).

Corollary (Mazzuchelli–P)

The amplituhedron A2,2,n(Z) is extendably convex.
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Complete monotonicity

By the Bernstein–Hausdorff–Widder-Choquet theorem, ΩP is
completely monotonic:

(−1)r∂ν1 . . . ∂νrΩP̂≥0

for all r > 0, νi, x ∈ P̂ .


