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Goal: predict outcome of particle collisions
~ scattering amplitude.

\‘\/?\
/ .

>




Goal: predict outcome of particle collisions
~ scattering amplitude.
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Problem: impossible to compute.

background to the detection of W* W~ pairs in their nonleptonic decays. The cross
sections for the elementary 2 - 4 processes have not been calculated, and their

complexity is such that they may not be evaluated in the foreseeable future. It is



Parke and Taylor, An amplitude for n gluon scattering (1986):
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Parke and Taylor, An amplitude for n gluon scattering (1986):
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Arkani-Hamed and Trnka, The Amplituhedron (2013): amplitudes
in N/ = 4 super Yang-Mills are “volumes” of geometric objects!




The projective simplex is

A, = conv{eg, ..., e} C P".

The Grassmannian parameterizes k-spaces in R™, and is a
projective variety via

Gr(k,n) — P(AFR")
span(vi, ..., Vg) —> 01 A ... A Up.

The positive Grassmannian is

Grzo(k,n) = A(n)_l N Gr(k,n).

k



Let Z be a (k4 m) x n matrix with positive maximal minors.

AFZ o Gr(k,n) --» Gr(k,k+m)
span(vy, ..., vg) > span(Zvy, ..., NZvg).

The amplituhedron Ay, n(Z) is the image of Gr>o(k,n).



Let Z be a (k4 m) x n matrix with positive maximal minors.

AFZ o Gr(k,n) --» Gr(k,k+m)
span(vy, ..., vg) > span(Zvy, ..., NZvg).

The amplituhedron Ay, n(Z) is the image of Gr>o(k,n).

Example (k = 1)
Z An—l — P
e; — Z;

4

The image is a cyclic polytope.



Some cyclic polytopes in P3:

S

=77\

[Hodges 2009]



Gr>o(k,n): linear (simplex) N nonlinear (Grassmannian).
What about Ay, 0?7
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The twistor coordinates wrt Z on Gr(k, k + 2) are

(ij) == det[Z; Z; Y], Y] € Gr(k, k + 2).



The twistor coordinates wrt Z on Gr(k, k + 2) are
(ij) == det[Z; Z; Y], Y] € Gr(k,k + 2).
On Gr(2,4), we have

(12) = (z1522j—22i215)P3a— (21123 — 231215 ) P24+ (22i 23— 23: 225 ) p1a+. . -



The twistor coordinates wrt Z on Gr(k,k + 2) are
(ij) == det[Z; Z; Y], Y] € Gr(k,k + 2).

On Gr(2,4), we have

(12) = (z1522j—22i215)P3a— (21123 — 231215 ) P24+ (22i 23— 23: 225 ) p1a+. . -

This vanishes on lines [Y] meeting the line Z1Z; in P,




Theorem (Ranestad—Sinn—Telen 24)

The algebraic boundary of the m = 2 amplituhedron is given by
(12), ..., (n—1n),(In) = 0.

Theorem (Even-Zohar—Lakrec—Tessler 25)

The algebraic boundary of the m = 4 amplituhedron is given by
(ii+1jj+1)=0,for1 <i<j<n.




The exterior cyclic polytope of Z is

Ck:,m,n(Z) = COI‘IV(ZrL'l VANRVAN sz : {il, N Zk;} C [TL])
in P(AFRFT™),



The exterior cyclic polytope of Z is

Ck:,m,n(Z) = COI‘IV(ZZ'1 VANRVAN sz : {’il, e ,Zk;} C [n])
in P(AFRFT™),

Example (The polytope Cy1 4(Z))

In (P?)*, we have
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The exterior cyclic polytope of Z is

Ck:,m,n(Z) = COI‘IV(ZZ'1 VANRVAN sz : {’il, e ,Zk;} C [n])
in P(AFRFT™),

Example (The polytope Cy1 4(Z))

In (P?)*, we have

YARAYZL
Zo N Zs3
Z1 N Z3
Zs N Zy
AR
Zo N Zy

Theorem (Mazzucchelli-P)
The polytope Cy m n(Z) is the convex hull of A m n(Z).



The polytope Cs 1 4(Z) looks like

YARAYZ)
oy N 3
Z1 N 23
Z3 N Zy
1 N\ Zy
Loy N2y

[Karp—Williams 17| The amplituhedron A3 1 4(Z) looks like

Not convex!



The polytope Co 1 4(Z) looks like

YARAYZ)
oy N 3
Z1 N 23
Z3 N Zy
1 N\ Zy
Loy N2y

[Karp—Williams 17| The amplituhedron A3 1 4(Z) looks like

Not convex!

Theorem (Mazzucchelli—P)
The amplituhedron Az 2., (Z) equals Co2,(Z) N Gr(2,4).



Fix real numbers 0 < a < b<c<d<e< f and consider

1 1 1 1 1 1

a b ¢ d e f

Z = aZ b2 2 42 g2 f2
CL3 b3 63 d3 e3 f3

Then C226(Z) is the convex hull in P> of the 15 columns of A2Z :

a—> a—c a—d a—e d—f e— f
a2 _ p2 a2 o2 a2 — g2 a2 _ 2 a2 — f2 e2 _ f2
a3 — p3 ad _ 3 a3 — g3 a3 _ &3 a3 — f3 3 _ f3

a’b — ab? a’c — ac? a’d — ad? a’e — ae? d2f—df2 e2f—ef2
a3b — ab’ alc — acd a3d — ad? ale — aed d3f—df3 eSf—ef3
a’b? — a?p3 alc? — a?c3 a3d? — a?d3 ale? — a?e3

d3F2 _ 283 G342



Fix real numbers 0 < a < b<c<d<e< f and consider

1 1 1 1 1 1

a b ¢ d e f

Z = aZ b2 2 42 g2 f2
CL3 b3 63 d3 e3 f3

Then C226(Z) is the convex hull in P> of the 15 columns of A2Z :

a—> a—c a—d a—e d—f e— f

a2 _ p2 a2 o2 a2 — g2 a2 _ 2 a2 — f2 e2 _ f2
a3 — p3 ad _ 3 a3 — g3 a3 _ &3 a3 — f3 3 _ f3
a’b — ab? a’c — ac? a’d — ad? a’e — ae? d2f—df2 e2f—ef2
a3b — ab’ alc — acd a3d — ad? ale — aed d3f—df3 eSf—ef3

a3b2 — a2b3  a3c2 — a2c3  aBd2 — a2d3 a3 — a2ed ... d3f2 _ 423  e3p2 _ 243

Substituting (1,3,4,7,8,9), it has f-vector (15,75,143,111, 30).
Among the 30 facets, there are 15 4-simplices, six double pyramids

over pentagons, three cyclic polytopes C'(4,6), and three with
f-vector (9,26, 30,13).



Identify vectors Z; A Z; with edges ¢j of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

) ) )
d// > XG ° 6




Identify vectors Z; A Z; with edges ¢j of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1 1
b O ) )
d// 5 6 5 6

For (1,3,4,7,8, f), three facets for f < 45/7 are

{12,23,34,45,56), {12,23,34,56,16}, {12,16,34, 45,56} .
and for f > 45/7 change to
(12,16, 23, 34,45}, {12,16,23,45,56} {16,23, 34,45, 56} .

Combinatorics changes as Z varies over positive matrices!



Of the (165) minors of A2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

1 1 1




Of the (165) minors of A2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Sign of each minor is fixed by a < ... < f except for

12,23, 34, 45, 56, 16] =

(a—c)(a—d)(a—e)(b—d)(b—e)(b—[f)(d—f)(c —€)(c = f)
- (abd — abe — acd 4 acf + ade — adf + bce — bef — bde + bef + cdf — cef).



Theorem (Mazzucchelli—P)

The combinatorial type of Co2,(Z) is constant for positive 4 x n
matrices Z outside the closed locus where the polynomial
det[Z1 AN Zy ... Zs N Zg Zg N Z1] or one of its permutations is

ZEro.

In Pliicker coordinates on Z € Gr(4,n):

DP1234P1356P2456 — P1235P1346P2456 + P1235P1246P3456 -



Theorem (Mazzucchelli—P)

The combinatorial type of Co2,(Z) is constant for positive 4 x n
matrices Z outside the closed locus where the polynomial

det[Z1 AN Zy ... Zs N Zg Zg N Z1] or one of its permutations is
zero.

In Pliicker coordinates on Z € Gr(4,n):

D1234P1356P2456 — P1235P1346P2456 T P1235P1246D3456 -
For k = m = 2, small f-vectors include:

n=95: 10 35 55 40 12
n=6: 15 75 143 111 30
n=7: 21 147 328 282 82
n=8 : 28 266 664 616 192
n=9 : 36 450 1217 1191 390

G T W N O A G Y



What is a dual amplituhedron?

Andrew Hodges, Eliminating spurious poles from gauge-theoretic
amplitudes (2009):

W

R [45]4 B (12)4(23) 4
ALY = DoAY (12)(23)(34) (15)51) /RfWZQ) P

Here Ps is the dual of



The polar dual of a semialgebraic set S C R" is
S*¥={le R")" : l(z)>—-1VxeS}.




The polar dual of a semialgebraic set S C R" is

S* .= {l e (RY* : I(z) > -1VzecS).

S*
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The polar dual of a semialgebraic set S C R" is

S*¥={le R")" : l(z)>—-1VxeS}.

S*

Observation: S* = conv(S)*. Very big!




The polar dual of a semialgebraic set S C R" is

S*¥={le R")" : l(z)>—-1VxeS}.

S*

Observation: S* = conv(S)*. Very big!
The extendable dual amplituhedron is

Ak = Gr(m, k+m)Nconv(Ag m )" = Gr(m, k+m)NCy . ..




Define
Wi =Zi—mi i NZs—maa2 N Ny N N Zjsg—1 ’LE[TL]
The twist map is

7 : Matso(k +m,n) — Matso(k +m,n),
Z — W,

where W has columns W7y, ..., W,. [Marsh-Scott 13|

Example
[Zl ...Z@]l—>[26/\Z1A22 A NZoNZdg ... Z5/\ZG/\Z1].



Define

Wi =Zi—mi i NZs—maa2 N Ny N N Zjsg—1 ZE[TL]

The twist map is

7 : Matso(k +m,n) — Matso(k +m,n),

Z — W,
where W has columns W7y, ..., W,. [Marsh-Scott 13|
Example
[Zl ZG] —> [ZG/\Zl/\ZQ A NZoNZdg ... Z5/\Z6/\Zl].

Theorem (Mazzucchelli—P)

There is an equality

Az2,(Z)* is an amplituhedron for another particle configuration!



For C22,6(Z) there are four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1
b O ) )
% 5 6 5 6

The first three come from Schubert divisors, which consist of
> lines meeting (12) in P




For C22,6(Z) there are four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1 1
b O ) )
% 5 6 5 6

The first three come from Schubert divisors, which consist of

> lines meeting (12) in P3 < defining equation (12) =0
» lines meeting (123) N (156) in P3
> lines meeting (123) N (456) in P3

Theorem (Mazzucchelli-P)

The supporting Schubert hyperplanes of Ca 2 ,(Z) are exactly the
(%) hyperplanes consisting of lines meeting
(i—1ii+1)N(j—14575+1) for1 <1i < j <mn. Furthermore, they
intersect transversally in Gr(2,4) for every Z € Mat~o(4,n).



The Schubert exterior cyclic polytope @gm,n(Z ) is obtained from
C.mn(Z) by deleting all facet inequalities whose supporting
hyperplanes are not Schubert divisors.

Proposition (Mazzucchelli-P)

There is an equality
Coon(Z) = Cogn(W)*.
Example
The f-vector of (26 is
(15,75,143,111, 30).
The f-vector of 52,2,6 is

(30,111,143, 75, 15).






The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ... A Z;,, for Z generic*.

k!



The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ... A Z;,, for Z generic*.

k!

Example

Z1 N Zy

Zy N 23
Z1 N Zs
Z3 N2y
Z1 N2y
Lo N Ly

We have

aZo+bls+cly = 21 — aZ1N\Lo+bZiNLs+cliNLy = Z1NZ1 = 0.

Non-bases are {12,13,14},{12,23,24},{13,23,34}, {14, 24, 34}.



The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ...\ Z;,, for Z generic*.

Example

YARAYZ

Zy N Z3
Z1 N s
Z3 N Zy
Z1 N2y
Lo N Ly

We have

aZo+bls+cly = 21 — aZ1N\Zo+bZiNLs+cZiNLy = Z1NZ1 = 0.

Non-bases are {12,13,14},{12,23,24},{13,23,34}, {14, 24, 34}.

Remark
The matroid Wy, 1 141 is the matroid of the braid arrangement.



Of the (165) minors of A2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

1 1 1




Of the (165) minors of A2Z, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Sign of each minor is fixed by a < ... < f except for

12,23, 34, 45, 56, 16] =

(a—c)(a—d)(a—e)(b—d)(b—e)(b—[f)(d—f)(c —€)(c = f)
- (abd — abe — acd 4 acf + ade — adf + bce — bef — bde + bef + cdf — cef).



The wedge power matroid Wy, ,

The case m = 1:

» Matroid of discriminantal arrangement of n general points
in P* [Manin—Schechtman 89]

The case k = 2:

» Dual of Kalai's hyperconnectivity matroid H,,—m,—2(n)
[Kalai 85, Brakensiek—Dhar—Gao—Gopi—Larson 24]

» Hi(n) is the algebraic matroid of n x n skew-symmetric
matrices of rank at most d [Ruiz-Santos 23]

Thecase k=2 and n =m + 4:
» Graphical characterization of bases of Ha(n) | Bernstein 17]
» 7Ho(n) is the algebraic matroid of Gr(2,n)

Upshot: describing bases of Wy, ,,, ,, and faces of Cj ,, n(Z) is hard!



Andrew Hodges, Eliminating spurious poles from gauge-theoretic
amplitudes (2009):

e a2y .
A2 = (ol s)alas)p1] ~ (12)(28)(34) (43 (51) /H,(W'Zz) P
4
3
1
5
o

What is a dual amplituhedron?



